首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Most existing dynamic origin–destination (O–D) estimation approaches are grounded on the assumption that a reliable initial O–D set is available and traffic volume data from detectors are accurate. However, in most traffic systems, both types of critical information are either not available or subjected to some level of measurement errors such as traffic counts and speed measurement from sensors. To contend with those critical issues, this study presents two robust algorithms, one for estimation of an initial O–D set and the other for tackling the input measurement errors with an extended estimation algorithm. The core concept of the initial O–D estimation algorithm is to decompose the target network in a number of sub-networks based on proposed rules, and then execute the estimation of the initial O–D set iteratively with the observable information at the first time interval. To contend with the inevitable detector measurement error, this study proposes an interval-based estimation algorithm that converts each model input data as an interval with its boundaries being set based on some prior knowledge. The performance of both proposed algorithms has been tested with a simulated system, the I-95 freeway corridor between I-495 and I-695, and the results are quite promising.  相似文献   

2.
The origin–destination matrix is an important source of information describing transport demand in a region. Most commonly used methods for matrix estimation use link volumes collected on a subset of links in order to update an existing matrix. Traditional volume data collection methods have significant shortcomings because of the high costs involved and the fact that detectors only provide status information at specified locations in the network. Better matrix estimates can be obtained when information is available about the overall distribution of traffic through time and space. Other existing technologies are not used in matrix estimation methods because they collect volume data aggregated on groups of links, rather than on single links. That is the case of mobile systems. Mobile phones sometimes cannot provide location accuracy for estimating flows on single links but do so on groups of links; in contrast, data can be acquired over a wider coverage without additional costs. This paper presents a methodology adapted to the concept of volume aggregated on groups of links in order to use any available volume data source in traditional matrix estimation methodologies. To calculate volume data, we have used a model that has had promising results in transforming phone call data into traffic movement data. The proposed methodology using vehicle volumes obtained by such a model is applied over a large real network as a case study. The experimental results reveal the efficiency and consistency of the solution proposed, making the alternative attractive for practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We consider inferring transit route‐level origin–destination (OD) flows using large amounts of automatic passenger counter (APC) boarding and alighting data based on a statistical formulation. One critical problem is that we need to enumerate the OD flow matrices that are consistent with the APC data for each bus trip to evaluate the model likelihood function. The OD enumeration problem has not been addressed satisfactorily in the literature. Thus, we propose a novel sampler to avoid the need to enumerate OD flow matrices by generating them recursively from the first alighting stop to the last stop of the bus route of interest. A Markov chain Monte Carlo (MCMC) method that incorporates the proposed sampler is developed to simulate the posterior distributions of the OD flows. Numerical investigations on an operational bus route under a realistic OD structure demonstrate the superiority of the proposed MCMC method over an existing MCMC method and a state‐of‐the‐practice method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We propose a dynamic linear model (DLM) for the estimation of day‐to‐day time‐varying origin–destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Short‐term traffic flow prediction is fundamental for the intelligent transportation system and is proved to be a challenge. This paper proposed a hybrid strategy that is general and can make use of a large number of underlying machine learning or time‐series prediction models to capture the complex patterns beneath the traffic flow. With the strategy, four different combinations were implemented. To consider the spatial features of traffic phenomenon, several different state vectors including different observations were built. The performance of the proposed strategy was investigated using the traffic flow measurements from the Traffic Operation and Safety Laboratory in Wisconsin, USA. The results show the overall performance of hybrid strategy is better than a single model. Also, incorporating observations from adjacent junctions can improve prediction accuracy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an approach to multi-objective signal control using fuzzy logic. The signal control uses fuzzy logic where the membership functions are optimised according to the Bellman–Zadeh principle of fuzzy decision-making. This approach is both practical for the decision-maker and efficient, as it leads directly to a Pareto-optimal solution. Signal control priorities are ultimately a political decision. Therefore the tool developed in this research allows the traffic engineer to balance the objectives easily by setting acceptability and unacceptability thresholds for each objective. Particular attention is given in the example to pedestrian delays. The membership functions of the fuzzy logic are optimised by a genetic algorithm coupled to the VISSIM microscopic traffic simulator. The concept is illustrated with a case study of the Marylebone Road–Baker Street intersection in London at which pedestrians as well as vehicle flows are high. The results prove the feasibility of the framework and show the vehicle delays for a more pedestrian friendly signal control strategy.  相似文献   

7.
Real‐time signal control operates as a function of the vehicular arrival and discharge process to satisfy a pre‐specified operational performance. This process is often predicted based on loop detectors placed upstream of the signal. In our newly developed signal control for diamond interchanges, a microscopic model is proposed to estimate traffic flows at the stop‐line. The model considers the traffic dynamics of vehicular detection, arrivals, and departures, by taking into account varying speeds, length of queues, and signal control. As the signal control is optimized over a rolling horizon that is divided into intervals, the vehicular detection for and projection into the corresponding horizon intervals are also modeled. The signal control algorithm is based on dynamic programming and the optimization of signal policy is performed using a certain performance measure involving delays, queue lengths, and queue storage ratios. The arrival–discharge model is embedded in the optimization algorithm and both are programmed into AIMSUN, a microscopic stochastic simulation program. AIMSUN is then used to simulate the traffic flow and implement the optimal signal control by accessing internal data including detected traffic demand and vehicle speeds. Sensitivity analysis is conducted to study the effect of selecting different optimization criteria on the signal control performance. It is concluded that the queue length and queue storage ratio are the most appropriate performance measures in real‐time signal control of interchanges. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号