首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The inferior ambient air quality was observed near highway passing through Jalgaon urban center. Among the pollutants critical level of particulates are observed at the roadside during May 2003 to April 2004. The shopkeepers working at the highway sides are at high risk of exposure to the air pollution caused by heavy highway traffic. The lung function test of the shopkeepers shows significant decrease in forced vital capacity, forced expiratory volume in one second and peak expiratory flow rate. The regular periodic health checkup and use of nose mask will protect the health of shopkeepers working near National Highway passing through Jalgaon urban center.  相似文献   

2.
Projecting future traffic is an important stage in any traffic and transportation planning study. Accurate traffic forecasting is vital for transportation planning, highway safety evaluation, traffic operations analysis, and geometric and pavement design among others. In view of its importance, this paper introduces a regression-based traffic forecasting methodology for a one dimensional capacity-constrained highway. Five different prediction functions are tested; the best was selected according to the accuracy of projections against historical traffic data. The three-parameter logistic function produced more accurate projections compared to other functions tested when highway capacity constraints were taken into consideration. The R 2 values at various test locations ranged from 88% to 98%, indicating good prediction capability. Using the Fisher's information matrix approach, the t-statistic test showed all parameters in the logistic function were highly statistically significant. To evaluate reliability of projections, predictive intervals were calculated at a 95% level of confidence. Predictions using the logistic function were also compared to those predicted using the compound growth rate and linear regression methods. The results show that the proposed methodology generates much more reasonable projections than current practices.  相似文献   

3.
Two apparent features that prevail at signalized intersections in China are green signal countdown device and long cycle lengths. The objective of this study is to investigate the impacts of green signal countdown device and long cycle length on queue discharge patterns and to discuss its implications on capacity estimation in the context of China's traffic. At five typical large intersections in Shanghai and Tianjin, 11 through lanes were observed, and 9251 saturation headways were obtained as valid samples. Statistical analyses indicate that the discharge process of queuing vehicles can be divided into three distinct stages according to the discharge flow rate: a start‐up stage, a steady stage, and a rush stage. The average time for queuing vehicles to reach a stationary saturation flow rate, that is, the start‐up stage, was found to be approximately 20–30 seconds; the rush stage usually occurs during the phase transition period. The finding is contrary to the conventional assumption that the discharge rate reaches a maximum value after the fourth vehicle is discharged and then remains constant during the green time until the queue is completely dissolved. The capacity estimation errors that might arise from the conventional methods are discussed through a comparative study and a sensitivity analysis that are based on the identified queue discharge patterns. In addition, a piecewise linear regression method was proposed in order to reduce such errors. The proposed method can be used for capacity estimation at signalized intersections with the identified queue discharge patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Highway automation entails the application of control, sensing and communication technologies to road vehicles, with the objective of improving highway performance. It has been envisioned that automation could increase highway capacity by a factor of three. The purpose of this paper is to develop a methodology for predicting highway capacity and comparing alternative automation concepts. It extends earlier research on optimal lane assignment on an automated highway to dynamic networks. A path-based linear program is formulated and solved through a column generation method. The algorithm has been applied to networks with as many as 20 on and off ramps, 80 segments, 4 lanes and 12 time periods.  相似文献   

5.
Tsai  Jyh-Fa  Chu  Chih-Peng 《Transportation》2003,30(2):221-243
The build-operate-transfer (BOT) approach has become an attractive instrument for public facility provision, especially for a project that faces difficulty with public finance. This study analyzes the regulation alternatives on private highway investment under a BOT scheme and their impacts on traffic flows, travel costs, toll, capacity, and social welfare (total user-benefit in the traffic system including congestion). For comparison, five cases are analyzed: (1) No BOT with maximizing welfare, (2) No BOT with breaking even on finance, (3) BOT without regulation, (4) BOT with a minimum flow constraint (the total users will not be less than those in Case 1), and (5) BOT with a maximum travel cost constraint (the travel cost for users on a non-tolled road will not exceed the maximum tolerance). After each case is modeled and simulated on some functional forms, we find that the case of BOT with regulations performs between the cases of maximizing welfare and that of maximizing profit. From the perspective of the government, regulation has less power in a project with low elastic demand. Furthermore, even when the regulation is strict, a high cost-efficient firm with BOT could result in a higher level of social welfare than that without a BOT scheme.  相似文献   

6.
Capacity functions are important in the model that accounts for the user's route choice behavior based on the traveller's perception of the travel time. This is because a capacity function represents the relationship between the traffic volume and the travel time on the link. The capacity function developed by the U.S. Bureau of Public Roads (BPR) has been used in many countries, including Korea, without much effort to calibrate the parameters for its own transportation environment. Countries other than the United States, however, have distinctive demographic, economic, cultural, and behavioral characteristics; and they might need unique capacity functions for their own environments. Thus, it is important for Korea to have its own capacity function that can appropriately represent the Korea highway environment. Any attempt to model the Korean highway system without using a suitable capacity function might result in inappropriate solutions, because most modeling activities are crucially based on link travel time, and it is the capacity function that furnishes those link travel time. A link capacity function for Korea is calibrated based on a BPR type formula utilizing an alternative method. The alternative method is developed in a bilevel programming framework that uses link volume counts instead of link flow and travel time data. Detailed calibration results are reported.  相似文献   

7.
Downs (1962) and Thomson (1977) suggested that highway capacity expansion may produce counterproductive effects on the two-mode (auto and transit) transport system (Downs–Thomson Paradox). This paper investigates the occurrence of this paradox when transit authority can have different economic objectives (profit-maximizing or breakeven) and operating schemes (frequency, fare, or both frequency and fare). For various combinations of economic objectives and operating schemes, the interaction between highway expansion and transit service is explored, as well as its impact on travelers’ mode choices and travel utilities. Further, for each combination, the conditions for occurrence of the Downs–Thomson Paradox are established. We show that the paradox never occurs when transit authority is profit-maximizing, but it is inevitable when the transit authority is running to maximize travelers’ utility while maintaining breakeven. This is because the former transit authority tends to enhance transit service (e.g., raise frequency or reduce fare) when facing an expanded highway; and on the contrary, the latter tends to compromise transit service (e.g., reduce frequency or raise fare). Both analytical and numerical examples are provided to verify the theoretical results.  相似文献   

8.
Revisiting the notion of induced traffic through a matched-pairs study   总被引:1,自引:0,他引:1  
In investigating the question of the existence of "induced demand" in connection with highway expansion projects, Hansen et al. (1993) studied eighteen California state highway segments whose capacities had been improved in the early 1970s. For the present study, these segments were paired with control segments that matched the improved segments to unimproved ones with regard to facility type, region, approximate size, and initial volumes and congestion levels. Taking annual data for average daily traffic (ADT) and design-hour-traffic-to-capacity (DTC) ratios during the 21 years 1976–1996, three approaches were used to compare growth rates between the improved and unimproved segments: overall growth comparisons for the matched pairs, repeated measures analysis, and analysis of matched mean profiles. We found the growth rates between the two types of segments to be statistically and practically indistinguishable, suggesting that the capacity expansions, in and of themselves, had a negligible effect on traffic growth over the period studied. Reasons for the differences between these results and those of aggregate cross-sectional models finding a significant induced demand effect are discussed. Our analyses suggest that the aggregate models may overestimate induced traffic due to the attribution of at least a fraction of the observed traffic growth to "induced demand" rather than to some of the confounding factors which were not controlled for in such studies. At the same time, it is noted that the traffic induced by capacity expansion may in certain circumstances be larger than that observed in the present study, with the effect of new highway construction on traffic growth being a prime candidate for scrutiny in this regard. The results of this study nonetheless suggest that, for existing facilities, the size of the induced-traffic effect that can be attributed to capacity enhancements may be sufficiently small that its detection in a case-control study would be difficult, if not impossible, without a substantially larger sample size.  相似文献   

9.
In this paper, a neural network (NN) approximator, integrated to a dynamic network loading (DNL) process, is utilized to model delays and to solve the DNL problem at an unsignalized highway node. First, a dynamic node model (DNM) is set out to compute the time-varying traffic flows conflicting at the node. The presented DNM has two components: a link model set with a linear travel time function and an algorithm written with a set of node rules considering the constraints of conservation, flow splitting rates and non-negativity. Each of the selected NN methods, feed-forward back-propagation NN, radial basis function NN, and generalized regression NN, are utilized one by one in the NN approximator that is integrated with the proposed DNM, and, hence, three DNL processes are simulated. Delays forming as a result of capacity constraint and flow conflicting at the node are calculated with selected NN configurations after calibrating the NN component with conical delay function formulation. The results of the model structure, run solely with the conventional delay function, are then compared to evaluate the performance of the models supported with NNs relatively.  相似文献   

10.
为了满足日益增长的交通流量和社会经济发展需求,提高济青高速通行能力,济青高速公路改扩建施工。工程采用"两侧拼宽"的方式,将道路扩建为双向八车道高速公路。本文依托此工程,通过VISSIM软件对道路改扩建交通组织下交通流特性进行分析,基于交通流特性、考虑安全设施等其他因素建立评价模型,进行改扩建高速公路安全评价。  相似文献   

11.
Effect of capacity concentration on highway corridor performance   总被引:1,自引:0,他引:1  
This paper investigates, through use of analytical models, the effects of capacity concentration on highway corridor performance. It concludes that when highways operate at a fixed total capacity, decreasing the highway spacing can increase the average travel time because highways will become more congested. When highways operate below capacity, decreasing the spacing is usually beneficial as it tends to reduce trip length when accessing highways, and allows a greater percentage of travel to be completed on highways instead of arterials.  相似文献   

12.
Cooperative Adaptive Cruise Control (CACC) systems have the potential to increase roadway capacity and mitigate traffic congestion thanks to the short following distance enabled by inter-vehicle communication. However, due to limitations in acceleration and deceleration capabilities of CACC systems, deactivation and switch to ACC or human-driven mode will take place when conditions are outside the operational design domain. Given the lack of elaborate models on this interaction, existing CACC traffic flow models have not yet been able to reproduce realistic CACC vehicle behaviour and pay little attention to the influence of system deactivation on traffic flow at bottlenecks. This study aims to gain insights into the influence of CACC on highway operations at merging bottlenecks by using a realistic CACC model that captures driver-system interactions and string length limits. We conduct systematic traffic simulations for various CACC market penetration rates (MPR) to derive free-flow capacity and queue discharge rate of the merging section and compare these to the capacity of a homogeneous pipeline section. The results show that an increased CACC MPR can indeed increase the roadway capacity. However, the resulting capacity in the merging bottleneck is much lower than the pipeline capacity and capacity drop persists in bottleneck scenarios at all CACC MPR levels. It is also found that CACC increases flow heterogeneity due to the switch among different operation modes. A microscopic investigation of the CACC operational mode and trajectories reveals a close relation between CACC deactivation, traffic congestion and flow heterogeneity.  相似文献   

13.
Many road authorities work with static values for road capacities, while it has been proven that capacity is not a fixed quantity. At the same time, there is an increasing need for accurate stochastic input for traffic models, such as the variation in road capacity. In this paper, a methodological framework with a conceptual model for practical stochastic capacity estimation is presented, and a quantification of motorway capacity variation is given for the influence of day‐type specific variations in capacity values. The results of the analysis show that there is a reduction in motorway breakdown capacity of 4% on weekend days in comparison with workdays. Furthermore, a capacity decrease of 8% was found for the discharge capacity in comparison with workdays. The analysis further shows that the breakdown capacity on holidays is not significantly lower than on workdays. Discharge capacity and capacity drops are also derived in each case. The results show that the capacity is significantly different depending on the type of day. A quantification of these differences is given in the form of a Weibull capacity estimation fit for each type‐of‐day scenario. Further consideration of the implications and applications of the framework is also given. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Broadcast capacity of the entire network is one of the fundamental properties of vehicular ad hoc networks (VANETs). It measures how efficiently the information can be transmitted in the network and usually it is limited by the interference between the concurrent transmissions in the physical layer of the network. This study defines the broadcast capacity of vehicular ad hoc network as the maximum successful concurrent transmissions. In other words, we measure the maximum number of packets which can be transmitted in a VANET simultaneously, which characterizes how fast a new message such as a traffic incident can be transmitted in a VANET. Integer programming (IP) models are first developed to explore the maximum number of successful receiving nodes as well as the maximum number of transmitting nodes in a VANET. The models embed an traffic flow model in the optimization problem. Since IP model cannot be efficiently solved as the network size increases, this study develops a statistical model to predict the network capacity based on the significant parameters in the transportation and communication networks. MITSIMLab is used to generate the necessary traffic flow data. Response surface method and linear regression technologies are applied to build the statistical models. Thus, this paper brings together an array of tools to solve the broadcast capacity problem in VANETs. The proposed methodology provides an efficient approach to estimate the performance of a VANET in real-time, which will impact the efficacy of travel decision making.  相似文献   

15.
ABSTRACT

The quality of traffic information has become one of the most important factors that can affect the distribution of urban and highway traffic flow by changing the travel route, transportation mode, and travel time of travelers and trips. Past research has revealed traveler behavior when traffic information is provided. This paper summarizes the related study achievements from a survey conducted in the Beijing area with a specially designed questionnaire considering traffic conditions and the provision of traffic information services. With the survey data, a Logit model is estimated, and the results indicate that travel time can be considered the most significant factor that affects highway travel mode choice between private vehicles and public transit, whereas trip purpose is the least significant factor for private vehicle usage for both urban and highway travel.  相似文献   

16.
This study aims to develop work zone speed‐flow and capacity models, which incorporate work zone configuration factors including the number of work zones, geometrical alignment, work zone speed limit, and work zone length. On the basis of the traffic data from six work zone sites with various work zone configurations, two nonlinear traffic speed and flow models including work zone configuration factors are developed for the uncongested and congested traffic conditions, respectively. A work zone capacity model is proposed on the basis of the two models. The three models can further be used to examine the effects of work zone configuration factors on the speed‐flow relationship and capacity at work zones. Results show that traffic speed, traffic flow, and work zone capacity increase with the posted speed limit. Traffic speed under uncongested conditions decreases with the geometric alignment, the number of work zones, work zone length, and heavy vehicle percentage. Under congested conditions, the increase of the number of work zones is found to exhibit a larger negative impact on the traffic flow than the increase of geometric alignment. The number of work zones is also found to have the largest negative impacts on work zone capacity, followed by the geometric alignment. Short work zone length exhibits a relatively minor contribution to increasing work zone capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The coordinated development of city traffic and environment is a key research content in traffic field in twenty-first Century. Among them, road section environmental traffic capacity analysis is one of the important research issues. It can provide solid theoretical basis and reliable data support for road network traffic optimization control, road traffic pollution control and city traffic structure optimization. This paper analyzed main factors which impacted environmental traffic capacity from two aspects, including road capacity constraint conditions and road traffic pollution control constraint conditions. Then, road section environmental traffic capacity optimization model was established, and method of improved augmented Lagrange function was used to solve the model. Case study showed that, (1) The environmental traffic capacity optimal model and methodology were effective; (2) In order to ensure road section environmental traffic capacity greater than (or equal to) road capacity, some measures could be taken including adjusting motor vehicle type proportion as well as improving emission characteristics of motor vehicles exhausting pollutants.  相似文献   

18.
Abstract

Understanding work zone traffic behavior is important for the planning and operation of work zones. The objective of this paper is to develop a mathematical model of work zone traffic flow elements by analyzing the relationships between speed, flow, and density that can be used to estimate the capacity of work zones. Traffic flow data were collected from 22 work zone sites on South Carolina interstate highways. The scatter plots of the collected data demonstrate that the relationship between speed and density does not follow Greenshields’ linear model. A non-linear hyperbolic model was developed to describe the relationship between speed and density. Using this model the capacity of a work zone was estimated to be 1550 passenger cars per hour for 2-lane to 1-lane closures. Adjustments to this capacity value to consider other types of vehicle as well as the work zone intensity are provided. Highway agencies can use this estimated capacity along with anticipated traffic demand to schedule work zone operations to avoid long periods of over-saturation.

The tapered approach to work zone lane closures used by South Carolina is similar to methods used in work zones throughout the world. The authors believe that the methodology described in this paper for modeling work zone traffic as well as estimating work zone capacity is transferable to other countries. The conversion of actual volumes to passenger car equivalents may have to be modified due to the significant differences in traffic makeup between the United States and other countries.  相似文献   

19.
文章通过分析研究5·12汶川大地震震害文献资料,发现在地震带区域内,以地震带轴线做参照系,公路建筑物布设方位不同,其震害程度不同,即公路建筑物震害程度与布设方位具有显著的相关性。由此推断:合理布设公路建筑物,可以使建筑物达到充分发挥其最大抗震能力的作用。  相似文献   

20.
Intersections are the bottlenecks of the urban road system because an intersection’s capacity is only a fraction of the maximum flows that the roads connecting to the intersection can carry. This capacity can be increased if vehicles cross the intersections in platoons rather than one by one as they do today. Platoon formation is enabled by connected vehicle technology. This paper assesses the potential mobility benefits of platooning. It argues that saturation flow rates, and hence intersection capacity, can be doubled or tripled by platooning. The argument is supported by the analysis of three queuing models and by the simulation of a road network with 16 intersections and 73 links. The queuing analysis and the simulations reveal that a signalized network with fixed time control will support an increase in demand by a factor of (say) two or three if all saturation flows are increased by the same factor, with no change in the control. Furthermore, despite the increased demand vehicles will experience the same delay and travel time. The same scaling improvement is achieved when the fixed time control is replaced by the max pressure adaptive control. Part of the capacity increase can alternatively be used to reduce queue lengths and the associated queuing delay by decreasing the cycle time. Impediments to the control of connected vehicles to achieve platooning at intersections appear to be small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号