首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
沪通长江大桥为4线铁路、6车道公路合建桥梁,主航道桥采用跨径布置为(142+462+1 092+462+142)m的连续钢桁梁斜拉桥。该桥桥塔基础建设条件复杂,根据桥塔基础特性,从结构受力、经济性、施工便捷等方面对大直径钻孔桩基础和沉井基础方案(圆形沉井、矩形沉井)进行比选,最终推荐采用倒圆角的矩形沉井基础。矩形沉井下段采用钢沉井,上段采用混凝土沉井。28号、29号沉井总高分别为105m、115m。标准段井身平面尺寸为86.9m×58.7m(四周倒圆角半径为7.45m),考虑施工便捷,井身竖向分节,标准节段高6m。沉井为平面框架结构,平面布置为24个12.8m×12.8m井孔,封底混凝土厚14m,为确保封底混凝土与井身结构传力,钢沉井底部设置抗剪剪力键。  相似文献   

2.
南京长江第四大桥北锚碇采用沉井基础,沉井尺寸为69.0 m×58.0 m×52.8 m,置于密实卵砾石层,工程地质条件复杂.沉井共分11节,第1节为钢壳混凝土沉井,其余均为钢筋混凝土沉井.采用打设砂桩和换填砂土复合地基加固法加固地基.在加固地基上现场拼装钢壳沉井节段,浇注第1节沉井混凝土.11节沉井分4次接高下沉,首次下沉采取水力吸泥机取土、降排水下沉,其余3次下沉采取空气吸泥机取土、不排水下沉.沉井下沉就位后按照4个分区的顺序逐区进行封底混凝土施工.施工监测表明,沉井下沉姿态、偏差均控制在规范标准之内.  相似文献   

3.
芜湖长江公铁大桥主桥为主跨588m的双塔双索面箱桁组合梁斜拉桥,该桥3号桥塔墩采用平面尺寸为65m×35m的圆端形设置式沉井基础。在沉井施工中,基坑采用钻爆法整层水下爆破成型;采用2艘抓斗挖泥船进行水下清渣;采用船载多波束和侧扫声纳法进行水下测量;采用重型锚碇系统及沉井调平系统进行沉井精确定位;采取抛填袋装碎石的方式进行沉井外壁防护;沉井分2次灌注水下封底混凝土,第1次全断面封底,第2次采用逐个井孔、逐舱的方式进行混凝土灌注;沉井盖板混凝土分2次浇筑成型,从盖板四周向中间分层、分段浇筑混凝土。  相似文献   

4.
沪通长江大桥主航道桥为主跨1 092m的双塔钢桁梁斜拉桥,桥塔墩采用86.9 m(长)×58.7m(宽)×105m(高)的沉井基础,针对超长超宽混凝土沉井易发生早期裂纹的情况,研究控制混凝土沉井开裂的施工关键技术。考虑造成混凝土沉井开裂的因素——混凝土水化热、混凝土收缩、温度梯度,确定采用分节分块浇筑混凝土、设置后浇段以及局部抗裂钢筋相结合的裂纹控制措施。在上游段设置后浇段+增设抗裂钢筋、留2处不设置后浇段的措施,中间段设置后浇段、不设抗裂钢筋的措施,下游段设置后浇段+增设抗裂钢筋,并布置测量元件监测结构应变和应力。结果证明,设置抗裂钢筋使混凝土收缩应力沿钢筋轴向均匀分布,避免在截断处出现应力集中,设置后浇段可使后浇段两侧一定范围的混凝土自由变形,释放混凝土收缩产生的拉应力,提高了混凝土的抗裂性能,避免了混凝土沉井出现裂纹。  相似文献   

5.
2016年5月10日,随着一声"拔球"命令的下达,混凝土倾注而下,芜湖长江公铁大桥3号桥塔墩基础开始封底施工(见图1)。该桥3号桥塔墩为国内首座设置式钢沉井基础,圆端型结构,平面尺寸65m×35m,高19.5m。沉井自2015年12月18日下水后,先后完成沉井溜放、围堰接高、  相似文献   

6.
正2016年5月10日,随着一声"拔球"命令的下达,混凝土倾注而下,芜湖长江公铁大桥3号桥塔墩基础开始封底施工(见图1)。该桥3号桥塔墩为国内首座设置式钢沉井基础,圆端型结构,平面尺寸65m×35m,高19.5m。沉井自2015年12月18日下水后,先后完成沉井溜放、围堰接高、注水下沉  相似文献   

7.
拱桥是我国桥梁建筑上优秀的传统形式,它符合就地取材的原则。去年,我曾参加了小跨径拱桥的施工,今将施工过程介绍如下: 工程概况本桥为一孔跨径7.0公尺半圆拱式桥,拱圈厚0.45公尺,台高4.0公尺,拱上侧墙高2.72公尺,总高为10.67公尺,基础深度2.25公尺(最下层为140~#混凝土),拱圈为170~#混凝土预制块,除拱圈为120~#水泥砂浆砌外,其余均为80~#水泥砂浆砌块石。桥台及拱圈预制块于  相似文献   

8.
双安桥是一座钢筋混凝土悬臂梁桥,全长492公尺,跨径28公尺(两端孔跨径22公尺),净宽6.7公尺,桥高10公尺。日伪投降前,曾将该桥第五号墩炸毁,以致影响第五、七孔吊梁,第六孔碇梁以及第五、六号墩全部破坏;同时由于爆破的震动,全桥在主梁上发生了比较严重的裂痕。1950年对该桥进行了全面的修复,但在1952年冬季,又有部分碇、吊梁搭头处支承垫板下混凝土发生严重破裂脱落,以致不能通车。当时分析的结果认为:  相似文献   

9.
沪通长江大桥主航道桥为(142+462+1 092+462+142)m双塔连续钢桁梁斜拉桥,该桥桥塔墩钢沉井顶面平面尺寸为86.9m×58.7m,其中29号墩钢沉井高56m,重量达1.6万吨,采用船坞内整体拼装成型后出坞浮运至桥位。为满足船坞内地基承载力的要求,对钢沉井的刃脚进行抄垫,刃脚抄垫后灌注2.5m高刃脚混凝土;1.6万吨钢沉井入水后的理论吃水深度为12.4m,而浮运所经航道最大水深仅10.5m,在钢沉井中间12个井孔底口以上15.9m处对称增设钢结构封闭盖板,在封闭井孔内加注压缩空气,以调整钢沉井的吃水深度使钢沉井在出坞及浮运状态下的实际吃水深度为7.5m;对钢沉井的出坞水位进行系统分析;做好出坞前各项检查、出坞时机的选择、拖轮的配备、安全措施等准备工作。钢沉井在船坞内拼装成型后,船坞内放水起浮,系缆、抄垫后开启坞门,船坞内拖轮编队出坞,浮运钢沉井至桥位。  相似文献   

10.
盘山大桥共有六孔,它的跨径是26.0公尺,是一座戛乌式木桁架桥,下部构造为混凝土墩,沉井基础,桥址临近海口,河水受潮湿影响,低潮时的水深为1.4~4.0公尺,高潮时达3.4~6.0公尺。我们根据当地具体条件,采用了浮运方法按装桁架,一孔桁架只需一个工作日即可架完,加速了整个施工进度,而且还节省了很多支架木、降低成本8,270余元,特将浮运架梁方法简要介绍如下:  相似文献   

11.
沪通长江大桥主航道桥为(140+462+1 092+462+140)m公铁两用钢桁梁斜拉桥,主航道桥6个桥墩均采用沉井基础,沉井上部为钢筋混凝土结构,下部为钢结构。其中,桥塔墩沉井平面尺寸为86.9m×58.7m,平面布置24个12.8m×12.8m的井孔;边墩及辅助墩沉井平面尺寸为39.2m×26.8m。为解决在巨大水流力下钢沉井的浮运、定位、着床等难题,确保施工质量,桥塔墩钢沉井在工厂整体制造,采取临时封闭12个井孔的助浮措施,整体出坞浮运,并采取了大直径钢管桩锚碇系统及液压千斤顶多向快速定位技术;边、辅墩沉井工厂整体制造,分两大段整体运输、吊装,采取了沉井内部大直径钢管桩定位技术;29号主墩采取河床预防护技术。采取以上关键技术后,主航道桥6个桥墩沉井均已进入稳定深度,实施效果良好。  相似文献   

12.
1941年京塘公路杨家堤至汗沟镇之间的一段路面,是用竹筋混凝土铺装的。这段路面经过长期使用,直到1950年还保持着原来的状况,力国内外研究和立用竹筋混凝土提供了一些资料。我们知道,混凝土路面工程中所用的混凝土,以要求抗弯强度为主。因为混凝土路面是作为一种板型构件设计的,它本身除了能够有足够的耐磨面层来承受各种车辆轮胎的磨耗外,还要有足够的伸张应力来抵抗由于面层所来的车辆荷重达到平衡。要达到这个目的,必须使混凝土板有相当高度的抵抗穹曲的能力,才能保持板的平衡荷重而免于破裂。同时,由于混凝土本身收缩膨胀的因素,板会出现裂缝。要克服这些缺点,并增加混凝土板抵抗弯曲强度的办法,就是在混凝土板内增加具有伸张应力和弹性模量较大的钢筋或竹筋。由于竹筋具有这种性能,并且成本比钢筋低廉,因  相似文献   

13.
五峰山长江特大桥桥北锚碇采用重力式沉井基础。锚碇区地质土层松软,地基承载力差,为保证地基承载力满足沉井拼装及接高浇筑要求,避免沉井下沉初期出现突沉现象,采用吹填砂施工、砂桩挤密加固、换填砂垫层及铺设素混凝土垫块等方法对地基进行加固。通过多种地基处理工艺相结合,至钢壳沉井隔舱混凝土浇筑完成,沉井累计均匀下沉101mm,地基承载力满足设计和施工需要。  相似文献   

14.
《中南公路工程》1989,(4):49-53
所谓“装配式沉井”,实际就是将一个薄壁沉井根据施工条件分成若干节来预制,然后安装。即一节节地叠起来,在井壳内灌注水下混凝土,使之成整体,最后象普通沉井那样封底填心而成为一个桥墩的基础。 自1977年在阳朔大桥首次采用装配式沉井施工以来,在区内已有多座大桥相继采用,例如,上渣大桥、驮卢大桥、金陵大桥、石龙大桥、那阳大桥等,现在正在施工的武宣大桥已经是第七座采用装配式沉井施工深水基础的大桥,也是目前区内施工水位最深的一座大桥。 武宣大桥全长549.28m。宽9 2×1.5m,全桥有两个桥台,两个岸墩,四个水中桥墩,共七跨,跨度为35 5×80 35m,其中两边跨35m混凝土板拱,中间五跨为箱形拱。桥缘标高最高点为78.58m,墩基岩面最低点为18.20m,总高差为60.38m,设计施工水位为35.00m,最深墩为2~#墩,约17m水深。  相似文献   

15.
沪通长江大桥主航道桥为主跨1 092m的双塔钢桁梁斜拉桥。主航道桥6个桥墩均采用沉井基础,沉井上部为钢筋混凝土结构,下部为钢结构;桥塔采用钻石形混凝土结构,高330m;主梁采用三主桁N形桁架结构。该桥施工时采取了多项关键技术:主墩钢沉井采用整体制造、充气助浮出坞浮运,定位时采用"大直径钢管桩+混凝土重力锚"锚碇系统及液压连续千斤顶多向快速定位技术施工;边墩、辅助墩钢沉井采用内部大直径钢管桩定位技术施工;沉井百米水深下的基底地形、刃脚埋深及浮土厚度采用声呐、超声波、水下机器人以及海床式静力触探系统等多种方法进行探测;在主墩基底与封底混凝土间埋置深水自平衡荷载箱,以测试主墩沉井的基底承载力;超高桥塔混凝土采用了降粘、抗裂技术施工;桥塔锚固区重型钢锚梁采用立式预制拼装、现场整体安装方案施工;钢桁梁采用大节段整体制造、架设技术施工。  相似文献   

16.
温州瓯江北口大桥主桥为主跨2×800m的三塔双层桥面钢桁梁悬索桥。针对该桥在深水、复杂海域环境中,中塔基础所受弯矩大、船撞力大及基岩埋深大的特点,中塔采用防撞能力强、刚度大、经济性更优的倒圆角矩形沉井基础。沉井总高68m,下部为填充混凝土的钢壳结构,高59m;上部为钢筋混凝土结构,高9m。在钢沉井高度方向上每隔1.5m设置1道水平桁架,内、外壁板设置竖向加劲肋。为保证结构耐久性,钢沉井壁板厚度预留腐蚀余量,并对上部钢沉井外表面进行重防腐涂装。建议设置沉井着床定位系统,并进行海床预防护控制沉井着床精度;采用严格控制结构水密性、设置射水管等措施保证沉井下沉的安全性及姿态可控。  相似文献   

17.
五峰山长江特大桥主桥为主跨1 092m的钢桁梁公铁两用悬索桥,北锚碇采用100.7m×72.1m×56m的沉井基础。该沉井首节采用钢壳混凝土结构、其余9节采用钢筋混凝土结构,采用"三次接高、三次下沉"的方案施工。为及时掌握沉井下沉施工过程中的几何姿态及受力情况,建立实时在线监测系统,对沉井几何姿态、沉井结构应力及沉井刃脚土压力进行自动化监测,基于监测数据及时进行沉井下沉控制。结果表明:下沉过程中沉井测点高差和倾斜度均在限值内,沉井挠度基本在20mm限值内,沉井几何姿态较好;沉井混凝土及钢结构测点的实测应力基本在限值范围内,沉井刃脚各测点的土压力均控制在1.20MPa限值内,沉井结构受力良好。  相似文献   

18.
南京长江第四大桥北锚碇沉井基础施工监控技术   总被引:2,自引:0,他引:2  
南京长江第四大桥北锚碇采用沉井基础,尺寸为69.0 m×58.0 m×52.8 m,距长江大堤仅90 m.沉井体积庞大,所处区域地质条件复杂,覆盖层较厚.依据规范并结合以往的施工经验,提出沉井几何姿态监控标准.介绍沉井下沉深度和平面位置及偏斜、刃脚踏面反力、沉井侧壁土压力、沉井结构应力、地下水位与井内水位、沉井底部土体开挖地形、地表沉降和长江防洪大堤沉降量的监测方案.通过施工监测,掌握沉井下沉的实时信息,为施工提供指导信息,确保施工安全顺利进行.  相似文献   

19.
《公路》1958,(11)
我省南(昌)东(峰界)线上高县境内的斜口桥,是南昌公路运输局1957年11月施工新建的一座半永久式桥,全桥4孔总长46.80公尺,中间3孔为跨径17.40公尺的木桁架桥面,两端孔为跨径6.00公尺的简支梁桥面,木桩桥座,重力式混凝土桥礅,桥礅自基底至礅顶高度为11.60~12.10公尺。这座桥的施工特点是采用了砂垫层作桥礅基础。砂垫层基础,以往在房建工程上曾经采用过,解放后铁路上采用过;在公路构造物方面,除小型涵管工程有采用的以外,在桥梁基础方面,一般考虑河流的复杂多变因素,很少采用。省交通管理局和南昌公路运输局  相似文献   

20.
海口世纪大桥主墩沉井施工   总被引:9,自引:0,他引:9  
海口世纪大桥位于海南省海口市北部海甸河入海口处,其主桥为一座双塔双索面钢筋混凝土斜拉桥,主墩基础采用钢壳与钢筋混凝土相结合的沉井结构,重点阐述了该桥主墩沉井基础的钢壳加工、钢壳整体吊装就位,钢筋混凝土沉井的接高及下沉技术,以及沉井水下混凝土封底技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号