首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
驼峰三级制动位能高的确定北方交通大学运输系刘彦邦,王能豪,张超1三级制动位的总能高我国的自动化、半自动化驼峰,在调车线的头部都设有Ⅲ制动位。设有Ⅲ制动位时,其Ⅰ、Ⅱ制动位的主要任务为间隔制动,Ⅲ制动位为目的制动,设有三级制动位的驼峰,应有较高的解体能...  相似文献   

2.
车辆减速器是驼峰编组场的主要调速设备,目前T@JK型减速器广泛应用于驼峰编组场的间隔制动位调速,它以压缩空气为动力,通过机械传递,使安装在制动梁上的制动夹板对车轮产生侧压力,来实现对车辆进行调速的目的.  相似文献   

3.
就调车线6-16股,不设间隔制动位的中小驼峰现代化改造的理论问题展开论证分析和计算机模拟定量分析,进而提出优化设计的关键是减少难易行车溜行时差,并指出为达到该目的应科学合理地运用可控顶技术,减速器技术的机理及在不同条件下,不同调速制式时优化设计的要点。  相似文献   

4.
柳州南站驼峰于2000年进行自动化改造,间隔制动位和目的制动位使用的设备都是重力式减速器,其中目的制动位使用T.JK1-C50型车辆减速器.在近几年的现场使用中,发现存在一些缺陷,影响了减速器的正常使用,威胁溜放车辆安全,增加了工区的维修成本和维修工作量.因此,采取相应措施加以改进显得十分必要.  相似文献   

5.
基于神经网络的间隔调速模型研究   总被引:3,自引:0,他引:3  
车组溜放速度控制是驼峰自动化的重点和核心内容。由于间隔调速位位于驼峰咽喉,溜放坡度大,车组速度快,车辆密集,所以间隔调速是速度控制的难点。传统的间隔调速思想是:首先根据车组溜放的物理数学模型,建立车组溜放方程,确定出口定速,然后调节车组的溜放速度,使之达到出口定速,即以“出口定速”为控制目标的静态间隔调速。这种控制方法由于没有实时考虑车组间的间隔 ,所以容易导致溜放事故或解体作业效率的降低。随着溜放作业自动化的发展,传统的静态间隔调速模型开始受到挑战,建立根据前后车组间的距离——间隔动态控制出口速度的间隔控制模型,应当成为当前驼峰自动化的研究重点。本文是利用智能控制和神经网络原理,建立动态控制出口速度的间隔制动位速度控制模型。该模型以前后车组间的实时间隔作为控制参数,动态控制车组的溜放速度。  相似文献   

6.
驼峰控制系统包括进路控制和速度控制两个方面。进路控制指根据联锁关系实现调车进路与溜放进路;速度控制指根据减速器性能做出相应的动作以完成间隔制动与目的制动,保证溜放间隔与安全连挂。本文通过分析驼峰溜放过程中的速度控制策略与减速器原理,结合MATLAB中的Simulink工具箱,进行建模仿真,实现溜放过程中控制系统策略与减速器动作的模拟,为更好地改进驼峰控制系统速度控制策略提供理论基础。  相似文献   

7.
采用T.JK非重力式减速器作为调速工具的自动化驼峰,在间隔制动位对短轻车进行速度控制时,由于采用"闯口"式控制模式,容易造成低速出口。为此对速度控制方式提出了"适度放入"的改进方法,并在怀化南驼峰控制系统进行了实施,提高了系统对短轻车的控制精度。  相似文献   

8.
溜放车组的间隔控制直接影响着驼峰的推峰速度和解体能力.目前所采用的间隔控制方法基本上沿用着人工控制所获得的经验,自动化后可以接近或达到稳定的人工控制水平,但不能保证繁忙驼峰高速推峰的要求.本文针对驼峰间隔制动位控制问题,提出了新的控制数学模型--等间隔控制模型,探讨提高推峰速度的途径.根据数学模型进行的仿真试验获得的数据说明,当减速器控制精度保持在均方差为0.5 km*h-1时,在难易不利组合隔钩溜放时,推峰速度可以从当前的3 km*h-1~5 km*h-1提高到6 km*h-1,使平均推峰速度达到7 km*h-1以上,可以实现自动化驼峰日解体能力5 500辆以上的运营要求.  相似文献   

9.
汪峰 《铁道通信信号》2007,43(7):38-38,64
新长铁路海安县站驼峰自动控制系统是TW-2型组态式自动控制系统,调速制式采用线束减速器+减速顶的线束打靶点连式,利用一个部位的减速器来完成间隔制动和目的制动2种功能。作为铁道部定点试验性驼峰场,海安县站驼峰2005年4月投入使用,随着解体作业量的增加,控制系统异常问题越来越集中地暴露出来,给解体溜放作业安全带来了极大的影响。  相似文献   

10.
六盘水南站驼峰场FTK-3型驼峰自动化控制系统属于三个部位制动,其中一、二部位的间隔制动采用T.JK非重力式减速器,三部位的目的制动采用T.JK1-D型重力式减速器,雷达采用TCL-2A型。设备自开通以来,多次出现空重混编的钩车在一、二部位减速器上脱线和前后钩车在三部位减速器上追钩的现象,严重影响了正常调车作业。为此,对驼峰设备进行了软件修改和设备优化。  相似文献   

11.
TBZK型驼峰进路控制系统   总被引:1,自引:0,他引:1  
TBZK型驼峰过程控制系统是根据国家"七五"科技攻关项目而研制的,包括:无线机车遥控、溜放进路控制、间隔制动控制和目的制动控制.该系统于1989年12月通过了铁道部组织的技术鉴定,由于该系统不包括驼峰调车进路控制,还不能实现驼峰作业控制的整体计算机化.为了完善TBZK型驼峰过程控制系统,铁道科学研究院通信信号研究所从1996年开始着手进行与过程控制系统配套的计算机控制的驼峰调车进路的研制,于1998年完成了研制开发工作,投入现场运营.该系统将驼峰调车控制和溜放控制合为一体,构成了驼峰进路控制系统,完成驼峰调车进路、溜放进路和推峰进路的全部作业控制.  相似文献   

12.
1 问题提出 海安站驼峰为TW-2型单推单溜自动化驼峰.10股道、13台转辙机、6台(3组)减速器.调速制式采用线束减速器 减速顶点连式线束打靶,利用一个部位减速器来完成间隔制动和目的制动.在作业过程中发现道岔、减速器、信号机电源电路的设计方面还存在安全隐患.  相似文献   

13.
自动化驼峰溜放作业过程中,因驼峰控制系统和环境因素等影响,常出现车组走行不到位而产生"天窗",导致股道溜放打靶距离不足,影响驼峰作业效率;通过对减速器制动能高的研究,确定打靶距离不足情况下减速器制动车辆安全连挂速度范围辆数,采取相应溜放方法,进一步提高驼峰解体作业效率。  相似文献   

14.
车辆减速器超速出口原因分析与解决办法探讨   总被引:1,自引:1,他引:0  
昆明东驼峰使用的是T·JK3-A(二部位)和T·JK2-B(三部位)浮轨重力式车辆减速器。间隔制动减速器大多安装在编组站头部(一、二部位),其主要作用是保证溜放车组间的间隔,同时兼顾调整目的制动减速器的入口速度。目的制动减速器大多安装在编组线内各股道中(三、四部位),其主要作用是保证溜放车组的安全连挂。  相似文献   

15.
介绍了在湛江站驼峰改造工程中选用TJDY减速器及安装和使用2年多的现场运用情况,说明TJDY减速器顺应科技发展潮流,用最简单的吸能方式解决了复杂的车辆制动的全过程,保证了作业安全。是如果能把在使用过程中渗油、漏油的问题彻底解决好,将是中小能力驼峰减速器的首选。  相似文献   

16.
对一例自动化驼峰第三制动位车辆减速器夹停钩车故障进行了分析,对驼峰控制系统如何减少减速器控制延迟时间、改进加速度算法、精确判断减速器制动时机等问题,提出了改进建议。  相似文献   

17.
TBZKⅡ型驼峰自动化系统的主要测量设备包括测速雷达、压磁测重机、测长设备和车轮传感器等,自动化系统通过对这些测量设备及一些基础设备信息的输入、输出控制溜放,达到间隔制动和目的制动的目标,从而实现车辆的安全连挂。因此,对这些设备输入、输出的日常检查对监督自动系统的安全运行非常重要。根据石家庄编组站下行驼峰场自动化系统的日常维修经验,总结出下列几点以供探讨。  相似文献   

18.
在新车辆减速器技术条件中,车辆减速器制动和缓解位置设置不同的限界,并与调车机车下部限界发生交叉,既有的限界检查器设置不满足现场使用需要。分析既有设置条件下限界检查器设置存在的问题,提出限界检查器设置方案及驼峰控制系统的修改方案。  相似文献   

19.
本文从中小驼峰的特点出发,总结和分析了我国中小驼蜂现代化调速制式的特点,并对适合中小驼峰运营特点的连一点一连调速制式设计原理和方法进行了初探。  相似文献   

20.
《铁路技术创新》2004,(2):45-45
TJD3型电动车辆减速器主要用于驼峰编组场一、二部位的调速,可做间隔制动设备,属双浮轨重力式车辆减速器。该设备是用电动器直接驱动的重力式车辆减速器,它是利用车辆自身的重量经过钳组转换成对车轮的侧压力实现对溜放车辆的制动减速,其制动力与车辆的重量成正比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号