首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
杨战勇 《公路》2022,67(3):124-130
目前公路桥梁规范中的徐变模型采用恒温假定而未考虑自然环境温度变化,因此可能导致计算结构线形存在较大偏差。在组合徐变模型的基础上,基于非线性最小二乘法采用多项式拟合气温历史数据,将环境变温效应的徐变系数修正项引入到规范徐变模型中,得到了一种考虑环境温度变化的改进型徐变模型。以一座主跨为142 m的三跨预应力混凝土连续梁桥为算例,选取国内气候差异较明显的典型城市为桥址背景,采用有限元数值分析方法,分别计算了规范徐变模型和改进型徐变模型下桥梁在不同城市施工及同一城市不同季节施工的成桥线形。分析结果表明,徐变效应考虑环境温度变化后,主梁跨中竖向最大累计下挠值较基准模型均有不同程度的增大,环境常年平均气温越高,最大累计下挠值的增大效应越显著;同一城市起始施工的季节不同,主要影响主跨最大累计下挠的中间值,而不会对徐变完成后的终值造成影响;以春季作为起始施工季节,边、主跨下挠最大值均较大,因此春季施工对结构线形最为不利。  相似文献   

2.
结合在自然环境条件下开展徐变试验和既有研究成果,对现有可考虑温度影响的徐变模型包括Fahmi提出的基于时间-温度等效原理的徐变模型、CEB-FIP(1990)模型、BP模型、B3模型和组合徐变模型进行比选,并将比选出的组合徐变模型应用于预应力混凝土梁桥的徐变效应分析中。假定徐变符合弹性徐变理论,基于初应变法解决了应用组合徐变模型进行桥梁结构徐变效应分析的问题。通过将基于组合徐变模型和依据我国公路04桥规分析得到的桥梁结构变形、应力和预应力损失结果进行比较,探究忽略实际变温对徐变影响可能导致的桥梁结构行为估算偏差。研究结果表明:考虑实际环境变温影响的徐变系数预测值与试验值更为贴近,现行徐变模型因未计入环境变温影响,可能低估了冬季和春季浇注混凝土的徐变,高估了夏季和秋季浇注混凝土的徐变;在考虑自然环境温度影响的徐变作用下,梁体下挠度可较规范值大约15.5 mm,截面应力与规范值的最大相对偏差约为10%,预应力损失可较规范值大约40%以上。随机变温作用下混凝土徐变,加剧了桥梁梁体持续下挠、混凝土开裂和预应力损失等问题。因此,在桥梁结构设计中推荐采用组合徐变模型计入实际环境变温对结构混凝土徐变行为的影响,从而为预应力束的合理布置与张拉控制、梁体预拱度的准确设置等方面提供参考。  相似文献   

3.
利用大型有限元软件Midas建立港珠澳钢混组合梁桥精细化有限元模型.根据港珠澳大桥所处地理位置和气候特点,对传统的《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)的徐变预测模型进行修正,建立考虑变温影响的徐变修正模型,计算得到徐变效应产生的桥梁长期挠度值以及应力变化关系.通过分析在不同初始加载时间下桥梁边跨跨中挠度最大值增长情况,总结得到了徐变在全年的发展规律.结果表明,使用该修正模型计算组合梁桥徐变效应能够适应当地季节更替明显、温度变化大的特点,能够更为精确地计算徐变效应引起的长期挠度值,为桥梁设计施工提供科学依据.  相似文献   

4.
为明确钢管混凝土拱桥钢管内核心混凝土徐变对桥梁应力重分布的影响,采用"按龄期调整模量法",分别运用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2012)中公式计算所得混凝土徐变系数和轴向受压钢管混凝土徐变试验、拱肋徐变试验拟合所得混凝土徐变系数,建立可以考虑混凝土徐变过程的ANSYS模型,分析混凝土徐变对茅草街大桥建造期拱肋下挠的影响;运用拉丁超立方抽样方法,以跨中拱肋挠度和钢管应力为限值,以钢材和混凝土弹性模量、上弦和下弦钢管壁厚、腹管壁厚、徐变模型不确定性系数、核心混凝土弹性模量计算所得不确定性系数和茅草街大桥数值模型不确定性系数为参数,计算得到茅草街大桥服役期内的失效概率。结果表明:在建造期内,以基于拱肋徐变试验得到的混凝土徐变系数来计算跨中拱肋下挠值与实际实测值吻合最好,验证了模型的可靠性和精确性;在服役期内,以拱肋挠度和钢管应力为限值,当服役龄期增加到100年时,桥梁失效概率逐步增大,不同混凝土徐变系数的计算结果差异较大;以挠度为限值时,分别利用式(1)、(2)、(6)计算得到的失效概率为0.311,0.013 8和0;以应力为限值时,分别利用式(1)、(2)、(6)计算得到的失效概率为0.499,0.225和0.165 2。因此对于钢管混凝土拱桥的徐变可靠度分析来说,关键之处在于选择正确的混凝土徐变模型。  相似文献   

5.
预应力混凝土连续箱梁桥的结构形式因其具有结构变形小、整体受力性能好等优点而被广泛应用,但是在桥梁运营阶段,梁体会因桥梁设计及施工过程中考虑收缩徐变不足而产生裂缝和不同程度的下挠现象。为了考虑混凝土收缩徐变对结构性能的影响规律,该文以青弋江客运专线预应力混凝土单箱三室连续梁桥为背景,通过有限元分析软件Midas/Civil对收缩徐变引起的主梁挠度、内力、钢束预应力损失进行对比分析。结果表明:混凝土收缩徐变引起主梁挠度增大,对中跨跨中附近影响尤其显著,考虑收缩徐变影响后主梁挠度变化曲线与实测值吻合度较好;混凝土收缩徐变导致主梁内力重分布,在成桥后前3年影响速率较大,以后逐渐趋于稳定;混凝土收缩徐变引起的钢束预应力损失,在跨中附近影响程度较大,在桥墩处影响程度较小;收缩徐变效应在成桥3年时已完成绝大部分。  相似文献   

6.
为充分了解施工过程中大跨度连续刚构桥的结构影响,文中以王家庄大桥作为研究对象,采用Midas/Civil 2015软件建立模型进行有限元分析。在所成模型中,对参数进行既定改变幅度调整,再通过控制变量法将其一一赋予桥梁,由此得到所选控制截面的弯矩值、应力值和挠度,而后对各项数值进行对比分析。对所选因素包括主梁自重、混凝土收缩徐变、主梁弹性模量等结构参数进行参数敏感性分析,得出相关结论为:在所研究的几个参数中,当将参数调整至相同幅度时,主梁自重,混凝土收缩徐变对桥梁结构影响较大,视为主要敏感性参数;弹性模量变化对结构影响较小,视为次要敏感性参数。建议在实际工程中,着重监控主梁自重、混凝土收缩徐变等参数在施工阶段的变化,弹性模量的变化可作为次要因素考虑。  相似文献   

7.
大跨连续刚构桥预应力混凝土箱梁的长期挠度预测探讨   总被引:1,自引:1,他引:1  
提高对混凝土收缩徐变的长期挠度预测精度,是大跨度桥梁设计中要解决的一个关键问题。根据已测得的虎门大桥连续刚构桥挠度长期观测数据,建立有限元模型,分阶段对大跨连续刚构桥预应力混凝土箱梁的徐变变形进行理论分析。探讨主梁上下缘应力差与结构徐变的关系。拟用文献[1]提供的某主跨270m连续刚构桥挠度长期观测的实测数据,考虑新规范中的可变作用准永久值对理论徐变计算值进行验证,通过有限元分析对成桥后的长期徐变变形给出较准确的预测,并得出挠度长期增长系数,为此类桥梁的长期挠度预测提供依据。  相似文献   

8.
温度变化和混凝土收缩徐变对连续刚构桥主梁的变形及内力产生较大影响。该文结合贵州赫章特大桥工程实例,介绍了应变修正剔除的方法,通过对箱梁截面划分网格计算温度系数,从而通过程序进行立模修正;根据中性轴的应力可以利用预应力张拉前后的应变直接测量,而与主梁重量无关的特点来对混凝土徐变系数进行识别,从而得到混凝土徐变应变。  相似文献   

9.
为了解结构状态参数对大跨径曲线矮塔斜拉桥成桥状态的影响,获取施工控制敏感参数,以黄龙带矮塔斜拉桥——(108+208+108)m双塔三柱式曲线预应力混凝土矮塔斜拉桥为背景,采用有限元软件TDV RM建立该桥空间杆系有限元模型,分析主梁自重、主梁弹性模量、斜拉索索力、预应力张拉力、混凝土收缩徐变和体系温度参数变化下,主梁的应力和挠度的变化规律。结果表明:主梁自重、斜拉索索力、混凝土收缩徐变和体系温度对成桥状态主梁的应力和挠度影响显著,是施工控制敏感参数;主梁弹性模量和预应力张拉力对成桥状态主梁的应力和挠度影响较小,是施工控制非敏感参数。  相似文献   

10.
轴心受压粉煤灰混凝土构件徐变系数研究   总被引:1,自引:0,他引:1  
为了研究粉煤灰混凝土构件在轴向压应力作用下的徐变效应,自制了试验加载装置,对不同质量分数(掺量)粉煤灰混凝土徐变开展了试验研究。根据徐变B3模型的特点,考虑粉煤灰掺量、水胶比等参数,利用试验结果修正了混凝土徐变B3模型。此外,针对中国现行桥梁设计规范中混凝土名义徐变系数未考虑粉煤灰参数影响的事实,在试验研究粉煤灰掺量对不同龄期混凝土抗压强度影响的基础上,结合各国已有徐变试验数据,对中国现行桥梁设计规范中混凝土名义徐变系数计算公式进行了修正。结果表明:当粉煤灰掺量分别为0,15%和30%,经养护至28d加载时,混凝土徐变随粉煤灰掺量的增大而减小;经修正后的规范徐变系数计算模型可提高粉煤灰混凝土徐变的预测精度。  相似文献   

11.
《公路》2021,(5)
梁拱组合桥构造相对复杂,施工过程不确定因素对桥梁线形及受力影响较大。通过建立精细化空间杆系有限元模型,研究预应力张拉误差和混凝土荷载等力学参数变化对结构应力及桥梁线形的影响。分析结果表明:当主梁混凝土自重比设计值大时,主梁顶板压应力减小,底板压应力增大,跨中合龙段附近主梁向上挠度减小;在梁拱组合桥成桥阶段,预应力张拉误差对主梁跨中挠度影响较为突出,梁拱组合桥在最大悬臂阶段预应力误差对桥墩附近主梁的挠度影响相对较小,越靠近悬臂端预应力误差对主梁的挠度影响越大。研究成果可为梁拱组合桥的设计及施工过程提供技术参考。  相似文献   

12.
预应力混凝土梁的长期变形与应力状态密切相关。研究表明,梁体应力水平越高,其跨中长期变形与现行规范计算值间的差异越大。针对影响预应力混凝土梁桥长期性能的各主要因素,包括混凝土的收缩、徐变及预应力损失等,进行试验研究,对现行规范关于预应力混凝土梁长期性能计算的方式进行验证,并采用徐变系数?(t,t_0)的修正系数λ对其加以适当的修正。通过对比分析,发现考虑修正系数后的理论计算数据与实测数据能较好地吻合,可以更准确地预测预应力混凝土梁桥的长期变形和长期应力,进而为大跨度预应力混凝土桥梁的设计、施工及运营期间的安全提供参考依据。  相似文献   

13.
在大跨度桥梁中,混凝土收缩徐变将会导致主梁的下挠度增大、应力发生重分布、预应力产生损失,对结构产生不利的影响,通过Midas/Civil2010有限元分析软件对大跨度矮塔斜拉桥建立模型,采用预测模型分析了在成桥状态下收缩徐变效应对主梁的应力和挠度的影响及预应力损失.同时,总结了针对大跨度矮塔斜拉桥减小收缩徐变效应的几种方法.  相似文献   

14.
针对混凝土斜拉桥服役期间主梁不断下挠的问题,该文基于修正模型分析大跨度混凝土斜拉桥服役期间主梁挠度变化规律。采用联合静动力的有限元模型修正方法,构造双目标优化问题,基于非支配排序遗传算法(NSGA-Ⅱ)求解,得到Pareto最优解集,从Pareto最优解集中找到协调最优解,从而实现有限元模型修正。模型修正后的静力位移和自振频率计算值与实测值吻合较好,能更好地反映结构的实际工作状态。在此基础上,结合主梁线形历年监测数据,分析不同徐变模式及拉索松弛效应等时变因素对主梁线形的影响,分析结果表明:采用CEB-FIP 2010徐变模式计算的挠度与实测挠度更加接近。中跨跨中下挠量最大,服役20年下挠量约为270 mm;主梁跨中挠度前5年平均增长率达33 mm/年,前5年挠度约占前40年的50%,后期主梁下挠趋于平缓。  相似文献   

15.
以栗子坪大桥——大跨径预应力混凝土连续刚构桥为工程实例,采用有限元程序Midas/Civil对其进行施工过程和运营阶段仿真计算,分析混凝土超方、预应力损失、混凝土收缩徐变、刚度损失等因素对大跨径预应力混凝土连续刚构桥跨中长期挠度的影响。计算结果表明:混凝土超方和桥面铺装施工误差导致的自重增加均可引起桥梁跨中长期挠度增加,后者超重使桥梁跨中长期挠度增加更大;预应力损失对桥梁跨中长期下挠影响非常显著,其中顶板束预应力损失影响最大,其次是腹板束,底板束影响最小;桥梁跨中长期挠度与终极徐变系数、环境相对湿度的变化有很大关系;梁体刚度降低使桥梁跨中长期挠度增加较多,且早期刚度的降低对桥梁跨中挠度增加影响较大。  相似文献   

16.
为了解大跨径预应力连续箱梁桥高强混凝土的收缩徐变规律,预测其长期变形,在箱梁跨中埋置测量传感器,直接测量混凝土的收缩应变,通过增量运算理论分离出混凝土的徐变应变,对于具体桥梁的C55高强混凝土实测数据显示,现行规范的收缩徐变模型总体上会低估高强混凝土的收缩作用,而高估徐变作用.用短期实测数据修正后的混凝土收缩徐变模型预测桥梁恒载下的长期变形,由两种类型修正式的挠度估算值与实测值的比较可知,其预测精度受混凝土短期实测应变数据的完整性、测量精度及修正式与实测数据吻合程度的影响.  相似文献   

17.
挠度是桥梁健康监测中评价桥梁使用功能和安全性的重要指标之一,本文依托实际工程,通过建立远程控制与操纵的健康检测系统,针对温度作用中的季节温差、日照温差对预应力混凝土斜拉桥跨中挠度的影响开展研究工作,分析得出了季节温差是影响预应力混凝土斜拉桥主梁长期竖向变形的主要因素;扣除季节温差和收缩徐变等长期因素的影响,车辆荷载对主梁跨中下挠的影响大于日气温变化的结论。  相似文献   

18.
以8根不同掺量的高性能粉煤灰混凝土无黏结预应力梁的收缩徐变试验为基础,提出了从混凝土模型梁短期试验值推算相应混凝土梁在该桥梁工作环境下收缩应变及徐变系数的方法,进而得出桥梁的徐变长期效应计算式;结合桥梁规范JTG D62-2004中收缩模型与徐变模型的思想,得出计算混凝土桥梁收缩应变及徐变系数的修正公式.该公式预测值与试验结果的比较表明:预测值具有较好的精度,且该预测方法不需做材料的收缩徐变试验,亦避免了从标准环境下用试验值推算桥梁工作环境下收缩徐变可能产生的误差.  相似文献   

19.
水磨湾特大桥合龙段预顶推施工   总被引:1,自引:0,他引:1  
张超  周东久 《中外公路》2005,25(3):69-71
温度和后期混凝土收缩徐变在桥梁合龙后产生一定的收缩量,迫使两主墩向跨中方向位移,墩顶、墩底产生较大的弯矩,同时主梁受到混凝土纤维的限制产生拉应力。对结构造成危害。该桥通过在中跨合龙前预先向两岸施加的一个水平推力。以抵消混凝土收缩徐变及降温引起的收缩量,改善了主梁和墩顶的受力状态。  相似文献   

20.
以某40m+5×70m+40m预应力混凝土箱梁为依托,分析了日照作用下混凝土箱梁竖向温度分布规律。借助midas Civil有限元结构分析软件,分别建立了箱梁悬浇阶段和成桥状态下的温度引起的结构状态变化模型,并进行了温度对箱梁应力和挠度影响的计算与分析。结果表明,温度对桥梁应力及挠度有一定影响,特别是成桥状态下温度对桥梁应力影响较大,因此在桥梁施工监控和结构测试时应考虑温度效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号