首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探讨软岩隧道小孔径预应力锚索合理支护参数,以甘肃渭源至武都高速公路木寨岭隧道为依托,在对不同围岩条件进行分类的基础上,通过现场试验研究了小孔径预应力锚索的变形控制效果,并结合现场试验与数值模拟分析结果,建议了不同围岩条件下小孔径预应力锚索的合理支护参数。结果表明:木寨岭隧道围岩可分为以炭质千枚岩为主、以炭质千枚岩和砂质板岩互层为主和以砂质板岩为主3种情况;围岩以炭质千枚岩为主时,隧道变形最大;以炭质千枚岩与砂质板岩互层为主时,隧道变形次之;以砂质板岩为主时,隧道变形最小;现有预应力锚索支护方案适用于以炭质千枚岩和砂质板岩互层为主的围岩,支护参数可维持不变;围岩以炭质千枚岩为主时,锚索锚固效果往往难以达到设计要求,建议采用5 m+12 m长短锚索组合,环向间距取0.8 m,排距取0.6 m,预紧力不宜超过200 kN;围岩以砂质板岩为主时,现有支护方案偏于保守,建议锚索长度全部采用5 m,环向间距取1.2~1.6 m,排距取0.8 m,预紧力可施加至300 kN以上。成果可为类似地层隧道小孔径预应力锚索支护参数选取提供参考。  相似文献   

2.
炭质板岩地层隧道施工要点及大变形防治措施   总被引:1,自引:1,他引:0       下载免费PDF全文
王维富 《隧道建设》2010,30(6):697-700
为解决兰渝铁路木寨岭隧道鹿扎斜井通过高地应力炭质板岩地段隧道防坍和变形控制,从炭质板岩的特性、变形机制以及出现变形后的处治方法等方面进行研究,得出以下几个结论:炭质板岩属软岩范畴,遇水易软化;有水地段开挖后易出现坍塌,需做好超前支护和注浆止水;高地应力炭质板岩隧道收敛持续时间长,累计变形量较大;发生变形后,可采用封闭仰拱、长锚杆、径向注浆、增设套拱等措施进行处治。  相似文献   

3.
该文以客运专线贵广线三都隧道为依托,采用现场试验方法,研究贵州地区炭质板岩软弱地层隧道施工过程中围岩变形特性、围岩压力,以及支护结构受力特征。现场精细化描述三都隧道掌子面炭质板岩节理信息。研究结果表明:隧道拱顶下沉和水平收敛较大,提前施作二次衬砌可有效抑制大变形及其引起的坍塌。围岩压力以竖向为主,拱顶锚杆轴力最大,建议加长拱部锚杆长度,边墙锚杆参数不变。二次衬砌拱顶和拱脚衬砌处于大偏心抗裂力学状态,成为结构关键控制截面,建议加强拱顶内侧、墙脚外侧配筋,提高结构整体安全性。  相似文献   

4.
为解决临合高速公路王格尔塘1号隧道炭质板岩地层隧道初期支护变形和塌方的处治,通过对炭质板岩的地质特性、变形机理的研究,分析出炭质板岩变形、坍塌的原因,根据其地质特性和变形机理有针对性的提出处治措施,并结合处治措施和处治效果,对炭质板岩地层隧道的设计与施工进行了总结。  相似文献   

5.
叶康慨 《隧道建设》2010,30(2):190-194
兰渝铁路木寨岭隧道大坪有轨斜井,穿越地质为炭质板岩和炭质页岩,且存在高地应力,由于主要受地质因素影响,施工中出现较大收敛变形,通过介绍兰渝铁路木寨岭隧道大坪有轨斜井施工遇到的炭质板岩高地应力段大变形的处理,简要分析变形的原因、变形段的施工原则及处理技术。  相似文献   

6.
国道G214线姜路岭隧道为典型的高海拔炭质页岩隧道,隧道开挖和初期支护施作后,变形快、变形大、持续时间长,本文以该隧道为依托工程开展研究,通过声波法和埋设多点位移计法测试深部围岩波速分布规律以及深部围岩位移变化分布规律,进而获得炭质页岩隧道围岩松动圈,以达到指导炭质页岩隧道围岩压力计算、系统锚杆设计以及控制变形的目的,对类似工程具有借鉴和指导意义。  相似文献   

7.
板岩隧道顺层塌方分析及预防失稳措施研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张卫霞 《隧道建设》2017,37(Z2):218-224
为避免板岩隧道围岩楔形体掉块和顺层塌方的发生,针对板岩的力学性质和变形特性,从隧道施工方面对板岩隧道围岩的工程特性和易形成塌方的地质构造类型进行总结,并以半山隧道初期支护长段落顺层塌方为例进行深入的分析和研究。结果认为:当顺层构造岩层和节理产状与隧道走向夹角较小、多组节理相互切割与岩层面形成不利结构面组合长段落斜穿隧道时,受施工开挖爆破震动、地下水浸润、重力作用以及大断面开挖形成临空面的影响,围岩及支护结构局部薄弱处出现失稳破坏,由于牵引作用不断扩大并持续发展造成较长段落的坍塌。最后,提出了顺层构造、节理密集带和隧道开挖后不利结构面组合对围岩稳定性的影响分析方法,针对板岩地质隧道施工提出了预防围岩失稳的措施和支护结构的优化措施。  相似文献   

8.
木寨岭隧道炭质板岩段大变形控制技术   总被引:5,自引:1,他引:4       下载免费PDF全文
张献伟 《隧道建设》2010,30(6):683-686
为解决高地应力炭质板岩隧道大变形的控制问题,以木寨岭隧道为例,从地质原因、设计原因、施工原因方面进行了大变形原因分析,通过选择合理的支护参数、采取保护围岩的施工理念,长锚杆、锁脚锚杆进行加强、优化断面形状、预留合理变形量并确定变形控制标准,适时进行支护加强、短台阶或超短台阶快开挖、快支护、快封闭和衬砌适时施作等综合施工技术,有效抑制了隧道大变形的发生。  相似文献   

9.
针对炭质千枚岩隧道施作锚杆时容易剥落掉块并导致局部失稳的问题,对先喷后锚法与传统先锚后喷法进行比较研究。为了分析2种施工方法对围岩与支护体系力学响应的影响,借助三维数值分析手段对洞周位移变化、初期支护结构受力、锚杆受力及围岩的塑性发展进行分析。结果表明,先喷后锚法引起的围岩变形与支护体系应力略大,先锚后喷法对控制围岩变形效果显著,二者均可满足一般工程需要;当对围岩变形控制要求严格时应选用先锚后喷法。  相似文献   

10.
针对隧道施工期间砂质板岩、炭质千枚岩及绿泥石片岩等软弱围岩在地下水作用下发生软化、剥落、坍塌,继而引发支护变形侵限、喷射混凝土软化剥落、钢架扭曲失稳等灾害,以木寨岭公路隧道2号为依托工程,通过现场试验、监控量测等手段,分析地下水对深埋软弱围岩隧道初期支护结构失稳及破坏的影响,并提出了在地下水富集区,采用高强预应力锚索支护体系代替传统约束锚杆、环向注浆锚杆以及超前小导管注浆加固围岩的支护方法,降低了混凝土注浆压力及施工难度,避免因锚杆注浆不到位形成渗流通道而影响开挖围岩及初期支护强度,并通过采用高强预应力锚索加固措施,从而提高围岩自承能力及初期支护稳定性。  相似文献   

11.
为解决高地应力软岩隧道建设过程中支护结构破坏、围岩大变形等问题,依托地处炭质板岩地层,具有地质构造复杂、断层发育、埋深大、地应力极高等特点的木寨岭特长公路隧道工程,对隧道围岩NPR锚索支护方案进行研究。首先,采用原位试验、现场勘察和室内试验方法,对其地质条件及破坏成因进行分析;然后,利用自主研发的高预紧力恒阻大变形锚索(NPR锚索)材料,设计出一种能够控制公路隧道围岩大变形的NPR锚索综合控制体系;最后,使用该控制体系在现场进行工业性试验,通过对NPR锚索加固区的围岩变形量、钢拱架应力和NPR锚索受力进行实时监测,分析NPR锚索支护方案的围岩控制效果。试验结果表明: 采用NPR锚索“非对称布设和长-短锚索组合搭配”的综合控制体系,能有效控制隧道围岩初期支护大变形难题,最大变形量从2 936 mm控制到240 mm以内,消除了初期支护侵限、开裂等破坏隐患,控制效果显著。  相似文献   

12.
隧道支护结构对控制围岩变形、保障施工安全至关重要。为研究支护结构参数对围岩稳定性的影响,文中以九绵高速桂溪隧道为依托,使用midas GTS建立隧道模型,针对支护结构参数对千枚板岩隧道围岩稳定性影响进行研究,研究初期支护喷射混凝土厚度、锚杆尺寸、排距和环形间距,以及管棚支护布设范围和注浆厚度等支护参数。结果表明,在一定范围内,增加喷射混凝土厚度、提高锚杆长度、减小锚杆布设排距、减小锚杆环形间距、增大管棚支护施作范围,以及合理选择注浆厚度均能提高隧道围岩稳定性。  相似文献   

13.
赵明 《广东公路交通》2019,45(4):232-236
梅州东环高速公路其古顶隧道围岩主要以炭质泥岩为主,隧道开挖过程中出现了显著的大变形,严重影响施工进度和安全。为找到其大变形的成因,进行了试验分析。结果表明,其古顶隧道炭质泥岩粘土矿物含量超过50%,遇水易软化,是隧道开挖后围岩变形增加迅速的重要原因之一。点荷载试验表明,炭质泥岩的强度具有明显的方向性,其垂直层面方向强度为26MPa,平行层面方向强度为16.9MPa,总体强度较低,隧道开挖后容易产生弹塑性变形和流变变形。现场扰动区范围测试表明,隧道开挖后边墙位置中风化炭质泥岩段边墙扰动区范围为9~10m,部分强风化段可以达到14m,而现有的锚固支护范围一般为3~4m,远小于炭质泥岩的开挖影响区,可能会进一步加剧隧道大变形的发生。  相似文献   

14.
依托雅康高速公路紫石隧道,建立三维数值模型,运用有限差分软件分析围岩施工期的应力和变形特征,研究穿越断层破碎带隧道的支护结构受力特性。结果表明:断层破碎带处围岩和衬砌的变形相对普通断面均较大;在断层破碎带与普通岩体交界处会产生非均匀变形,导致衬砌结构出现压应力集中现象;隧道二衬达到受力稳定状态需要较长时间,且安全系数较低。  相似文献   

15.
针对高地应力软岩隧道开挖时围岩大变形问题,以某隧道圆形扩挖段为背景,采用三台阶法施工和3层初期支护+小导管注浆+二次衬砌的复合结构支护,并通过现场监测、数值模拟和理论计算研究开挖过程中的围岩变形及支护结构受力。结果表明:上、中台阶开挖时的隧道围岩变形速率较大,在仰拱封闭和第3层初期支护施作完成后,隧道变形趋于稳定;采用3层初期支护结构可有效改善隧道周边围岩应力,3层初期支护基本都是受压结构,拱腰和边墙处竖向应力最大,拱顶处水平应力最大;二次衬砌拱腰、拱顶、拱脚和边墙处安全系数均大于规范要求,保证隧道结构安全。  相似文献   

16.
为探究在软弱围岩隧道运营期间围岩蠕变效应对二次衬砌安全性的影响,以九景高速公路隧道为依托,以Ⅳ级围岩区段二次衬砌支护结构为研究对象,采用室内试验和数值模拟手段,首先对该围岩区段泥质粉砂岩在不同应力水平下的单轴蠕变特性进行了室内试验分析,并采用Cvisc模型对蠕变试验数据进行了非线性拟合,获得了Cvisc模型的蠕变参数。然后,利用FLAC3D软件建立了两车道公路隧道三维数值模型,研究了单考虑围岩蠕变作用和同时考虑隧道埋深对运营隧道衬砌结构安全性的影响。结果表明:非线性拟合相关性系数在0.92~0.96之间,可认为Cvisc模型能够很好地描述泥质粉砂岩的衰减蠕变和稳定蠕变关系;单考虑围岩蠕变作用,在同一支护时间,二次衬砌安全系数较高的位置支护结构承受的围岩压力相对较小,围岩的蠕变变形量较大,但过小的支护承载又会导致围岩蠕变变形而增加围岩压力,进而不利于运营隧道衬砌结构的长期安全;同时考虑隧道埋深的影响,二次衬砌支护结构的承载随着隧道埋深的增加而减小,即围岩自身能够承担较大部分的因蠕变变形而增加的围岩压力,从而对运营隧道衬砌结构的长期安全有利。  相似文献   

17.
兰渝铁路两水隧道高地应力软岩大变形控制技术   总被引:5,自引:0,他引:5  
赵福善 《隧道建设》2014,34(6):546-553
兰渝铁路两水隧道地质条件极为复杂,洞身围岩为千枚岩及炭质千枚岩,属极软岩,受高地应力影响,施工时发生了挤压性大变形,变形和破坏极为严重。以现场测试和理论分析为手段,结合隧道变形特征,探索和研究了适合两水隧道的软岩变形控制技术,并得出以下结论:1)软岩隧道的变形特性及稳定性(塑性区)取决于地应力、围岩的力学特性、开挖断面等,且与围岩的支护条件密切相关;2)通过采用加大预留变形量、加大支护刚度、多重支护,优化施工方法、适时施作二次衬砌等手段有效地控制了大变形,较好地解决了两水隧道高地应力软岩施工问题。在此基础上,提出了软岩隧道大变形分级标准及其对应的支护参数。  相似文献   

18.
云南香丽高速公路穿越富水炭质板岩地段,多座隧道出现隧底结构破损,破损主要特征为隧底填充混凝土沿隧道中线纵向开裂,裂缝上宽下窄,呈"V"字形,对于隧道施工以及后期运营带来极大的安全隐患。该文以香丽高速公路典型富水炭质板岩地层隧道为工程背景,通过现场调查和数值计算分析等方法,分析隧道底部结构破损原因,提出相应的防治措施。结果表明:隧道底部结构破损主要是由于仰拱积水,隧道基底围岩遇水软化,导致隧道底部结构所受拉应力过大,出现张拉裂缝;隧道仰拱现状也对于仰拱受力不利。对于基底围岩进行加固,以及适当调整仰拱曲率可以避免隧道底部结构破损的发生。  相似文献   

19.
为深入分析地下水影响下的软岩隧道力学特性及施工技术,本文选取某软岩隧道为依托工程,全面总结分析其工程特性,利用数值模拟手段对比分析自然状态和浸水状态下初期支护、围岩的应力应变特性,并有针对性的提出施工对策。研究结果表明:软岩隧道围岩中亲水矿物成分遇水后产生膨胀,导致隧道初期支护产生开裂、渗水、基底隆起、错台等病害;软岩隧道浸水状态下初期支护第一主应力、围岩塑性区、初期支护竖向位移有较大幅度的增加,其导致隧道支护结构受力分配极不均衡;采用增设锚注支护、调整支护结构参数等措施可有效控制初期支护、围岩的变形,提高隧道整体稳定性。研究成果可为类似工程的设计、施工提供技术支撑。  相似文献   

20.
赵大洲 《公路交通科技》2010,27(12):105-111
通过建立可反映互层岩体中砂岩与板岩组成、岩层倾角、岩层走向等因素变化对岩体变形影响的互层岩体本构模型,研究了砂板互层岩体中隧道围岩的力学特性。研究结果表明:岩体中板岩体积含量越高,围岩最大变形及破坏范围越大,隧道周边围岩变形不对称性也越明显,板岩结构面的内摩擦角大小对岩体变形及破坏范围影响很大,板岩沿结构面破坏为砂板互层岩体的主要破坏形式之一;砂板互层岩体的倾角变化将影响隧道周边围岩变形的对称性及破坏区域的分布,倾角在40°~60°时,围岩变形的不对称性最明显,板岩含量较高时,砂板互层岩体的最大变形随倾角的增大而降低;岩层的走向与洞轴线交角越大,围岩变形越小,隧道周边围岩变形也越趋于对称,在陡倾砂板互层岩体中,洞轴线应尽可能沿与岩层走向大角度相交的方向布置以利于围岩的稳定;随着埋深的增加,围岩变形及破坏范围均增长,因岩层倾角、走向变化引起的隧道周边围岩变形不对称性也越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号