共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
钢混组合梁作为充分发挥材料特性的结构,在城市桥梁建设领域中应用广泛,然而对钢混组合梁横向分布系数的理论研究及工程实践应用较少。为了给实际工程应用提供相应的计算参考,以深圳工程实例中的简支体系多箱室钢混组合梁为例,研究了钢混组合梁横向分布系数的计算方法,总结出了相应的规律。 相似文献
3.
4.
本文以城市高架简支预制槽形钢混组合梁桥为研究对象,选取了桥面板与钢梁之间的滑移效应、跨间横梁的个数、桥面板板厚、桥梁宽度和跨径、以及主梁刚度等参数,应用有限元方法,全面分析了各因素对该桥型荷载最不利横向分布系数的影响。研究表明:组合梁的界面滑移效应对荷载最不利横向分布系数影响在5%以内;保证跨径一定,组合梁跨间横梁的个数对宽桥荷载最不利横向分布系数的影响在8%以内,对窄桥则更小;桥面板板厚的增加会使荷载横向分布更均匀,宽跨比越大的桥,板厚对最不利横向分布系数的影响越大;保证桥宽不变,随着跨径的增大,荷载最不利横向分布系数逐渐减小,主梁数相同时,随着宽跨比的增大,最不利横向分布系数逐渐增大。梁高的增加会使最不利横向分布系数更大,但最大增幅保持在5%以内。在今后的标准化设计中,可取某几种最不利参数将其余参数进行包络,从而节约设计成本、提高设计效率。 相似文献
5.
目前对于多梁式矮箱梁桥的荷载横向分布计算采用刚接梁法,或采用有限元软件建立模型计算,但以上2种方法都未将抗扭刚度的影响考虑在内。因此,以上采用的2种计算分析方法不能对结构的特性进行准确模拟计算,也不能十分准确地对桥梁技术状况以及承载能力进行评价。为此,基于传统刚接梁计算荷载横向分布方法,在建立柔度系数矩阵时加入考虑主梁和翼板的约束扭转作用,提出一种适用于多梁式矮箱梁桥的荷载横向分布计算方法。为验证该方法的正确性,以某20 m跨径预制PC箱梁桥为对象,采用考虑抗扭刚度、未考虑抗扭刚度的刚接梁法和有限元数值模拟方法(梁格模型和板单元模型)计算其荷载横向分布系数,并与场地试验(中载和偏载2种工况)实测结果进行验证对比。结果表明:所提出的横向分布计算方法比未考虑箱梁主梁和翼板扭转的刚接梁法计算精度更高,也更接近实桥受力特点;同时,梁格模型、板单元模型与所提出的横向分布计算方法所得计算结果整体趋势基本上一致,相比于有限元数值模拟计算结果,采用该横向分布计算方法所得应变和挠度横向分布与实测结果更为接近,且偏差都在20%以内;该方法可在现场场地试验和桥梁承载能力评定中替代复杂的有限元数值计算方法,为预制矮箱梁桥场地试验和桥梁技术状况及其承载能力的评定提供较为准确的理论参考依据。 相似文献
6.
装配式T梁荷载横向分布分析 总被引:1,自引:0,他引:1
T梁荷载横向分布系数的求解属空间问题,然而一般把空间问题简化为平面问题进行手工求解,会在一定范围内出现误差。本文对手算和空间计算荷载横向分布系数求解值进行了比较,得出了一些结论,可为T梁设计提供参考和借鉴。 相似文献
7.
本文以40m跨径的多梁式工字钢-混凝土组合梁为研究对象,利用ANSYS通用有限元软件建立三维数值分析模型。分析焊钉的集束式布置与均布式布置、组合梁的滑移效应及跨间横梁的设置情况等条件对结构横向分布系数、剪力滞效应、桥面板横向弯曲及成桥过程稳定等方面的影响。总结并提出建议,以期为类似结构的设计提供参考。 相似文献
8.
为了进一步深入研究拱梁组合式连续梁桥的横向分布特性,以龙溪大桥为背景,采用空间有限元的分析方法,对拱梁组合式连续渠桥的横向分布特性及沿纵向的变化规律进行了研究,并与传统计算刚架拱桥的简化弹性支撑连续梁法进行对比。对比分析后认为,两种方法结果吻合很好,在实际设计拱梁组合式连续梁桥时,横向分布系数计算可以采用弹性支承连续梁简化方法。 相似文献
9.
本文以无弹性压缩的曲梁单元的荷载和变形分析为基础,采用一整片曲梁为单元的有限条力法,试图建立曲梁桥的荷载横向分布理论。从理论上和算例中,分析了曲梁桥荷载横向分布随矢跨比变化的规律,阐述了曲梁桥荷载横向分布理论是直梁桥荷载横向分布理论的推广,进而成为梁桥荷载横向分布理论的一般形式,提出了借助于直梁桥方法的曲梁桥荷载横向分布计算的实用方法。 相似文献
10.
为分析新型波形钢腹板曲线箱梁桥的荷载横向分布特性,以兰州市中川机场的一座新型波形钢腹板曲线箱梁桥为背景,采用有限元法对其荷载横向分布展开研究。首先,通过软件ANSYS18.2建立该曲线梁桥有限元模型,模型的正确性已得到试验数值的验证;然后,分析了3种参数对该曲线梁桥荷载横向分布的影响规律。结果表明,新型波形钢腹板曲线箱梁桥的有限元模型接近实际的桥梁结构;采用类型Ⅳ的横联,该桥荷载横向分布系数最小,采用类型Ⅰ、Ⅱ和Ⅲ的横联,其荷载横向分布系数相近,多方面考虑建议采用类型Ⅳ横向联系;对于不同类型的横联,横联间距为6.4 m和8.0 m下的荷载横向分布系数相近,考虑到曲线梁桥受力复杂,建议将横联间距控制在4.8 m以内;该桥荷载横向分布系数随桥梁跨径的增大而减小,且减幅较大。研究结果可为该类桥梁荷载横向分布的研究提供理论依据。 相似文献
11.
12.
以一座钢混组合梁桥实例研究体现了混凝土徐变效应影响不容忽视,结合理论与有限元模型,通过比较组合梁结构应力及挠度结果进行参数敏感性分析,比较了混凝土强度、混凝土桥面板的理论厚度、混凝土龄期、环境年平均湿度、抗剪连接件的抗剪刚度的复杂影响。 相似文献
13.
多箱室宽箱梁顶板作为直接承受外部荷载的主要结构,受力复杂,常常需要对其进行考虑框架效应影响的横向计算,必要时采用实体有限元分析。运用ANSYS建立箱梁局部实体有限元模型,主要研究了梁截面参数对顶板受力性能的影响,如梁高、腹板斜率、腹板厚度、底板厚度、箱室布置及横向预应力间距等等。结果表明:箱室布置是箱梁顶板受力性能优劣的决定因素;其次合理的预应力间距布置能极大改善顶板受力性能;梁高、腹板厚、底板厚对顶板受力性能影响较小,且其值增加为有利影响;腹板斜率对顶板受力几乎无影响。 相似文献
14.
结合常用中小跨径钢板组合梁的构造,利用有限元软件计算分析横向联结系的数量、截面形式对钢板组合梁桥受力性能的影响。计算结果表明:对于跨中截面,跨间小横梁数量越多,则混凝土板顶面纵桥向压应力越大、底面纵桥向压应力越小、混凝土板顶面横桥向拉应力越小、底面横桥向拉应力越大;而跨间小横梁数量对中支点处混凝土板和所有钢梁的受力性能几乎无影响。跨间布置奇数道小横梁比布置偶数道小横梁对结构受力更有利,建议中小跨径钢板组合梁跨间布置不少于3道小横梁;小横梁数量对主梁挠度影响较小,其影响程度远远小于混凝土板厚度改变对主梁挠度的影响。 相似文献
15.
16.
对于双索面斜拉桥的荷载横向分布计算,通常采用杠杆法。为了验证计算方法的准确性,文章针对一座采用双边箱的混凝土斜拉桥,进行了1∶20的有机玻璃节段模型试验。试验模型除了尺寸与实桥相似外,还尽量模拟了实桥的拉索边界条件。通过不同荷载工况的加载测试,得到了节段模型中应力数据,从而推算出荷载横向分布系数。对于试验模型,还通过有限元进行了同步计算。通过试验和有限元计算表明,对于该小边箱主梁,可以近似采用杠杆法计算横向分布系数。 相似文献
17.
系杆拱桥吊杆横梁弹性支撑在系梁和吊杆连接节点上,是桥梁中直接承受荷载和传力的重要构件。该文采用杠杆法、弹性支撑连续梁法、空间有限元程序计算法。分析了3片拱肋系杆拱桥荷载横向分布系数的计算方法,通过对比得出了三者的差异,指出了设计时应予以重视之处。 相似文献
18.
预制装配无湿接缝高强混凝土工字组合梁桥由于其装配化程度高、施工速度快等特点,越来越多地应用于中国公路及市政桥梁建设中。为验证该新型结构的受力性能及荷载分配比例,确立合理的设计计算模式和横隔梁设置方法,分别进行了设置5道及3道横隔梁的8梁式桥梁结构现场足尺模型试验,研究适用于该结构的荷载横向分配比例计算方法。试验及分析结果表明:设置3道横隔梁与采用5道横隔梁的横向分配比例接近,边、中梁比例系数分别为1.08和1.14;正弯矩等效加载试验中的应变校验系数、挠度校验系数分别为0.68~0.90、0.60~0.86;荷载横向分配规律现场实测值及精细化数值分析结果均小于传统理论计算方法(梁格法、刚接板梁法、修正刚性横梁法)计算值,表明该类桥梁横向传力均匀,安全储备充足。采用3道横隔板代替5道横隔板进行桥梁设计时,桥梁受力合理、构造可行、结构安全。 相似文献
19.
20.
针对水平荷载的横向分布问题,基于刚性横梁法计算弯梁桥的径向水平荷载的原理,研究了弯梁桥径向水平荷载的横向分布。以某桥为研究对象,利用非线性有限元软件建立了该桥空间弯梁模型,在验证了该方法可行性和准确性的基础上分析了径向水平荷载对主梁内力的影响。 相似文献