首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many problems in transport planning and management tasks require an origindestination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or roadside interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available data is particularly attractive.The need of low-cost methods to estimate current and future O-D matrices is even more valuable in developing countries because of the rapid changes in population, economic activity and land use. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of this is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods.The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Three types of demand models have been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three estimation methods have been developed to calibrate these models from traffic counts, namely: non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximumlikelihood (ML).The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They were found to perform satisfactorily since each calibrated model reproduced the observed O-D matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and the stochastic method due to Burrell, in determining the routes taken through the network.requests for offprints  相似文献   

2.
This paper describes the application of a capacity restraint trip assignment algorithm to a real, large‐scale transit network and the validation of the results. Unlike the conventional frequency‐based approach, the network formulation of the proposed model is dynamic and schedule‐based. Transit vehicles are assumed to operate to a set of pre‐determined schedules. Passengers are assumed to select paths based on a generalized cost function including in‐vehicle and out‐of‐vehicle time and line change penalty. The time‐varying passenger demand is loaded onto the network by a time increment simulation method, which ensures that the capacity restraint of each vehicle during passenger boarding is strictly observed. The optimal‐path and path‐loading algorithms are applied iteratively by the method of successive averages until the network converges to the predictive dynamic user equilibrium. The Hong Kong Mass Transit Railway network is used to validate the model results. The potential applications of the model are also discussed.  相似文献   

3.
Cascetta  Ennio  Russo  Francesco 《Transportation》1997,24(3):271-293
Traffic counts on network links constitute an information source on travel demand which is easy to collect, cheap and repeatable. Many models proposed in recent years deal with the use of traffic counts to estimate Origin/Destination (O/D) trip matrices under different assumptions on the type of "a-priori" information available on the demand (surveys, outdated estimates, models, etc.) and the type of network and assignment mapping (see Cascetta & Nguyen 1988). Less attention has been paid to the possibility of using traffic counts to estimate the parameters of demand models. In this case most of the proposed methods are relative to particular demand model structures (e.g. gravity-type) and the statistical analysis of estimator performance is not thoroughly carried out. In this paper a general statistical framework defining Maximum Likelihood, Non Linear Generalized Least Squares (NGLS) and Bayes estimators of aggregated demand model parameters combining counts-based information with other sources (sample or a priori estimates) is proposed first, thus extending and generalizing previous work by the authors (Cascetta & Russo 1992). Subsequently a solution algorithm of the projected-gradient type is proposed for the NGLS estimator given its convenient theoretical and computational properties. The algorithm is based on a combination of analytical/numerical derivates in order to make the estimator applicable to general demand models. Statistical performances of the proposed estimators are evaluated on a small test network through a Monte Carlo method by repeatedly sampling "starting estimates" of the (known) parameters of a generation/distribution/modal split/assignment system of models. Tests were carried out assuming different levels of "quality" of starting estimates and numbers of available counts. Finally NGLS estimator was applied to the calibration of the described model system on the network of a real medium-size Italian town using real counts with very satisfactory results in terms of both parameter values and counted flows reproduction.  相似文献   

4.
Consider a city with several highly compact central business districts (CBD), and the commuters’ destinations from each of them are dispersed over the whole city. Since at a particular location inside the city the traffic movements from different CBDs share the same space and do not cancel out each other as in conventional fluid flow problems albeit travelling in different directions, the traffic flows from a CBD to the destinations over the city are considered as one commodity. The interaction of the traffic flows among different commodities is governed by a cost–flow relationship. The case of variable demand is considered. The primal formulation of the continuum equilibrium model is given and proved to satisfy the user optimal conditions, and the dual formulation of the problem and its complementary conditions are also discussed. A finite element method is then employed to solve the continuum problem. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

5.
A nascent ridesharing industry is being enabled by new communication technologies and motivated by the many possible benefits, such as reduction in travel cost, pollution, and congestion. Understanding the complex relations between ridesharing and traffic congestion is a critical step in the evaluation of a ridesharing enterprise or of the convenience of regulatory policies or incentives to promote ridesharing. In this work, we propose a new traffic assignment model that explicitly represents ridesharing as a mode of transportation. The objective is to analyze how ridesharing impacts traffic congestion, how people can be motivated to participate in ridesharing, and, conversely, how congestion influences ridesharing, including ridesharing prices and the number of drivers and passengers. This model is built by combining a ridesharing market model with a classic elastic demand Wardrop traffic equilibrium model. Our computational results show that (i) the ridesharing base price influences the congestion level, (ii) within a certain price range, an increase in price may reduce the traffic congestion, and (iii) the utilization of ridesharing increases as the congestion increases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

This paper develops a model for estimating unsignalized intersection delays which can be applied to traffic assignment (TA) models. Current unsignalized intersection delay models have been developed mostly for operational purposes, and demand detailed geometric data and complicated procedures to estimate delay. These difficulties result in unsignalized intersection delays being ignored or assumed as a constant in TA models.

Video and vehicle license plate number recognition methods are used to collect traffic volume data and to measure delays during peak and off-peak traffic periods at four unsignalized intersections in the city of Tehran, Iran. Data on geometric design elements are measured through field surveys. An empirical approach is used to develop a delay model as a function of influencing factors based on 5- and 15-min time intervals. The proposed model estimates delays on each approach based on total traffic volumes, rights-of-way of the subject approach and the intersection friction factor. The effect of conflicting traffic flows is considered implicitly by using the intersection friction factor. As a result, the developed delay model guarantees the convergence of TA solution methods.

A comparison between delay models performed using different time intervals shows that the coefficients of determination, R 2, increases from 43.2% to 63.1% as the time interval increases from 5- to 15-min. The US Highway Capacity Manual (HCM) delay model (which is widely used in Iran) is validated using the field data and it is found that it overestimates delay, especially in the high delay ranges.  相似文献   

7.
In recent years, increasing attention has been drawn to the development of various applications of intelligent transportation systems (ITS), which are credited with the amelioration of traffic conditions in urban and regional environments. Advanced traveler information systems (ATIS) constitute an important element of ITS by providing potential travelers with information on the network's current performance both en-route and pre-trip. In order to tackle the complexity of such systems, derived from the difficulty of providing real-time estimations of current as well as forecasts of future traffic conditions, a series of models and algorithms have been initiated. This paper proposes the development of an integrated framework for real-time ATIS and presents its application on a large-scale network, that of Thessaloniki, Greece, concluding with a discussion on development and implementation challenges as well as on the advantages and limitations of such an effort.  相似文献   

8.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a computationally efficient and theoretically rigorous dynamic traffic assignment (DTA) model and its solution algorithm for a number of emerging emissions and fuel consumption related applications that require both effective microscopic and macroscopic traffic stream representations. The proposed model embeds a consistent cross-resolution traffic state representation based on Newell’s simplified kinematic wave and linear car following models. Tightly coupled with a computationally efficient emission estimation package MOVES Lite, a mesoscopic simulation-based dynamic network loading framework DTALite is adapted to evaluate traffic dynamics and vehicle emission/fuel consumption impact of different traffic management strategies.  相似文献   

10.
Node models for macroscopic simulation have attracted relatively little attention in the literature. Nevertheless, in dynamic network loading (DNL) models for congested road networks, node models are as important as the extensively studied link models. This paper provides an overview of macroscopic node models found in the literature, explaining both their contributions and shortcomings. A formulation defining a generic class of first order macroscopic node models is presented, satisfying a list of requirements necessary to produce node models with realistic, consistent results. Defining a specific node model instance of this class requires the specification of a supply constraint interaction rule and (optionally) node supply constraints. Following this theoretical discussion, specific macroscopic node model instances for unsignalized and signalized intersections are proposed. These models apply an oriented capacity proportional distribution of the available supply over the incoming links of a node. A computationally efficient algorithm to solve the node models exactly is included.  相似文献   

11.
文章分析了轨道交通客流需求量的影响因素,以拥挤条件下的出行阻抗函数为基础,通过引入弹性需求条件下的轨道交通均衡配流条件,构建了弹性需求的均衡配流模型。根据模型的特点,给出了改进的用于求解弹性需求下的轨道交通均衡配流模型的Frank-wolfe算法。最后通过一个算例说明了算法的有效性和合理性。  相似文献   

12.
Validating the results of a route choice simulator   总被引:1,自引:0,他引:1  
This paper describes the validation of a route choice simulator known as VLADIMIR (Variable Legend Assessment Device for Interactive Measurement of Individual Route choice). VLADIMIR is an interactive computer-based tool designed to study drivers’ route choice behaviour. It has been extensively used to obtain data on route choice in the presence of information sources such as Variable Message Signs or In-Car Navigation devices. The simulator uses a sequence of digitized photographs to portray a real network with junctions, links, landmarks and road signs. Subject drivers are invited to make journeys between specified origins and destinations under a range of travel scenarios, during which the simulator automatically records their route choices. This paper describes validation experiments carried out during the period Summer 1994 to Autumn 1995 and reports on the results obtained. Each experiment involved a comparison of routes selected in real life with those driven under simulated conditions in VLADIMIR. The analysis included investigation of the subjects’ own assessment of the realism of the VLADIMIR routes they had chosen, a comparison of models based on the real life routes with models based on VLADIMIR routes, and a statistical comparison of the two sets of routes. After an extensive series of data collection exercises and analyses, we have concluded that a well designed simulator is able to replicate real life route choices with a very high degree of detail and accuracy. Not only was VLADIMIR able to precisely replicate the route choices of drivers who were familiar with the network but it also appears capable of representing the kind of errors made and route choice strategies adopted by less familiar drivers. Furthermore, evidence is presented to suggest that it can accurately replicate route choice responses to roadside VMS information.  相似文献   

13.
14.
A number of approaches have been developed to evaluate the impact of land development on transportation infrastructure. While traditional approaches are either limited to static modeling of traffic performance or lack a strong travel behavior foundation, today’s advanced computational technology makes it feasible to model an individual traveler’s response to land development. This study integrates dynamic traffic assignment (DTA) with a positive agent-based microsimulation travel behavior model for cumulative land development impact studies. The integrated model not only enhances the behavioral implementation of DTA, but also captures traffic dynamics. It provides an advanced yet practical approach to understanding the impact of a single or series of land development projects on an individual driver’s behavior, as well as the aggregated impacts on the demand pattern and time-dependent traffic conditions. A simulation-based optimization (SBO) approach is proposed for the calibration of the modeling system. The SBO calibration approach enhances the transferability of this integrated model to other study areas. Using a case study that focuses on the cumulative land development impact along a congested corridor in Maryland, various regional and local travel behavior changes are discussed to show the capability of this tool for behavior side estimations and the corresponding traffic impacts.  相似文献   

15.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

16.
Autonomous vehicles admit consideration of novel traffic behaviors such as reservation-based intersection controls and dynamic lane reversal. We present a cell transmission model formulation for dynamic lane reversal. For deterministic demand, we formulate the dynamic lane reversal control problem for a single link as an integer program and derive theoretical results. In reality, demand is not known perfectly at arbitrary times in the future. To address stochastic demand, we present a Markov decision process formulation. Due to the large state size, the Markov decision process is intractable. However, based on theoretical results from the integer program, we derive an effective heuristic. We demonstrate significant improvements over a fixed lane configuration both on a single bottleneck link with varying demands, and on the downtown Austin network.  相似文献   

17.
A grid based modelling approach akin to cellular automata (CA) is adopted for heterogeneous traffic flow simulation. The road space is divided into a grid of equally sized cells. Moreover, each vehicle type occupies one or more cell as per its size unlike CA traffic flow model where each vehicle is represented by a single cell. Model needs inputs such as vehicle size, its maximum speed, acceleration, deceleration, probability constants, and arrival pattern. The position and speed of the vehicles are assumed to be discrete. The speed of each vehicle changes according to its interactions with other vehicles, following some stochastic rules depending on the circumstances. The model is calibrated and validated using real data and VISSIM. The results indicate that grid based model can reasonably well simulate complex heterogeneous traffic as well as offers higher computational efficiency needed for real time application.  相似文献   

18.
A model is presented that relates the proportion of bicycle journeys to work for English and Welsh electoral wards to relevant socio-economic, transport and physical variables. A number of previous studies have exploited existing disaggregate data sets. This study uses UK 2001 census data, is based on a logistic regression model and provides complementary evidence based on aggregate data for the determinants of cycle choice. It suggests a saturation level for bicycle use of 43%. Smaller proportions cycle in wards with more females and higher car ownership. The physical condition of the highway, rainfall and temperature each have an effect on the proportion that cycles to work, but the most significant physical variable is hilliness. The proportion of bicycle route that is off-road is shown to be significant, although it displays a low elasticity (+0.049) and this contrasts with more significant changes usually forecast by models constructed from stated preference based data. Forecasting shows the trend in car ownership has a significant effect on cycle use and offsets the positive effect of the provision of off-road routes for cycle traffic but only in districts that are moderately hilly or hilly. The provision of infrastructure alone appears insufficient to engender higher levels of cycling.
Matthew PageEmail:

John Parkin   joined academia after a career in consultancy. He has experience of all stages of the promotion of transport infrastructure, from planning and modelling to design and implementation. His specialises in transport engineering with an emphasis on design innovation, sustainability principles and community benefit. Mark Wardman   has been involved in transport research for over 20 years. His main research interests are in behavioural response models in general and stated preference in particular. Areas of application have included public transport, notably rail, with several novel applications to cycling and environmental issues. Matthew Page   research interests include transport policy and how it has developed, the environmental impacts of transport, the impacts of transport on climate change, and walking and cycling.  相似文献   

19.
Automated Vehicles (AVs) offer their users a possibility to perform new non-driving activities while being on the way. The effects of this opportunity on travel choices and travel demand have mostly been conceptualised and modelled via a reduced penalty associated with (in-vehicle) travel time. This approach invariably leads to a prediction of more car-travel. However, we argue that reductions in the size of the travel time penalty are only a crude proxy for the variety of changes in time-use and travel patterns that are likely to occur at the advent of AVs. For example, performing activities in an AV can save time and in this way enable the execution of other activities within a day. Activities in an AV may also eliminate or generate a need for some other activities and travel. This may lead to an increase, or decrease in travel time, depending on the traveller’s preferences, schedule, and local accessibility. Neglecting these dynamics is likely to bias forecasts of travel demand and travel behaviour in the AV-era. In this paper, we present an optimisation model which rigorously captures the time-use effects of travellers’ ability to perform on-board activities. Using a series of worked out examples, we test the face validity of the model and demonstrate how it can be used to predict travel choices in the AV-era.  相似文献   

20.
绿色出行发展的根本目的是为了实现城市交通可持续发展,实现出行安全、畅通、高效、舒适、环保、节能,从而实现社会、经济、交通和环境的协调发展。本文通过对绿色出行的概念、内涵、特征和实现途径等相关理论进行解读,确定绿色出行系统的主要构成;采用计划行为理论、交通需求管理理论等多视角,对影响和制约城市绿色出行发展的关键因素进行分析和识别,并研究提出围绕保障能力、基础设施、运输装备、运营服务等方面的绿色出行评价指标体系框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号