首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
崖门大桥12#、13#主墩承台长30.5m、宽21.8m、高6.5m,承台设计为高桩承台。介绍大体积混凝土承台施工中承台封底质量、承台混凝土质量及大体积砼水化热的控制等。  相似文献   

2.
西安某高架桥工程部分线位与地铁四号线重叠,桥梁基础为避开已建地铁隧道,需采用大跨径承台跨越。以该工程为背景,对预应力混凝土实心承台和普钢-预应力混凝土混合空心承台这两种大跨径承台分别采用有限元软件进行计算,同时对两种承台的优缺点进行对比分析,论证两种承台方案的安全性及合理性。计算表明,两种承台的强度及抗裂性能均满足规范要求,但预应力混凝土承台张拉预应力时在桩顶产生附加弯矩,对桩基影响较大,而混合承台施工期间采用分段浇筑,预应力在系梁与桩基连成整体前张拉完成,对桩基影响较小,推荐采用普钢-预应力混凝土混合空心承台。  相似文献   

3.
该文以某斜拉桥承台大体积混凝土基础施工控制为例,从承台模板制作安装、钢筋及冷却水管施工、混凝土配合比设计和模拟试验、温控设计、防裂措施、混凝土浇筑等方面对大型桥梁大体积承台混凝土施工控制技术进行了分析和总结。  相似文献   

4.
以南京长江二桥南汊桥南、北主塔墩承台施工为背景,就混凝土浇注及养护过程中的水化热控制问题进行了论述,着重介绍了承台大体积混凝土施工的温度控制措施.实践表明,承台施工温控有效地控制了混凝土内表温差及层间温差,取得了较理想的效果.  相似文献   

5.
以东海大桥承台大体积混凝土海上浇筑为背景,介绍钢套箱承台大体积混凝土养护工艺、东海大桥承台大体积混凝土中试试验和承台大体积混凝土浇筑实际情况.  相似文献   

6.
南京长江二桥大型承台施工中的温度控制   总被引:1,自引:0,他引:1  
谢臣  杨文灿 《国外公路》2000,20(3):54-58
以南京长江二桥南汊桥南、北主塔墩承台施工为背景,就混凝土浇注及养护过程中的水化热控制问题进行了讨论,着重介绍了承台大体积混凝土施工的温度控制措施。实践表明,承台施工温控有效地控制了混凝土内表温差及层间温差,取得了较理想的效果。  相似文献   

7.
以仙桃汉江公路大桥18号主承台大体积混凝土为背景,就大体积承台混凝土施工的温度控制和施工工艺进行论述,并提出大体积混凝土施工工艺及温度控制措施。  相似文献   

8.
随着科学技术的进步,新材料、新技术的广泛应用,桥梁跨度越来越大,大体积混凝土应用越来越广泛,承台混凝土体积越大,混凝土内部水化热聚集就越多,内外散热不均匀不一致,使混凝土内部产生较大的温度应力,导致承台混凝土开裂,给工程质量埋下了严重的质量隐患,因此,承台大体积混凝土设计、施工时如何降低混凝土内部温度,如何降低混凝土内外温差,防止裂缝产生是关键。本文结合临吉高速公路壶口黄河大桥主墩承台设计及施工要求,分析大体积混凝土裂缝成因和控制措施。  相似文献   

9.
大跨径桥梁承台结构尺寸大,单次浇注混凝土方量大,为典型的大体积混凝土结构,施工中温度裂缝的产生将危害桥梁结构安全及耐久性。本文以清云高速公路西江特大桥2个主墩承台施工为依托,结合项目特点,针对大体积混凝土特征,对承台混凝土施工采用全过程温控,确保大体积混凝土不产生温度裂缝,保证了承台施工质量,为类似项目提供参考依据。  相似文献   

10.
《公路》2017,(7)
嘉绍大桥主航道桥为六塔独柱四索面分幅钢箱梁斜拉桥,主墩承台为圆柱形深埋式承台,直径39.0~40.6m,单个承台混凝土方量约8 000m~3,承台施工难点大、技术复杂。在嘉绍大桥Ⅳ标承台施工实践的基础上,介绍强涌潮水域埋置式承台双壁钢围堰的沉放工艺、水下封底混凝土浇筑工艺、承台大体积混凝土施工及温控措施。  相似文献   

11.
罗超云  李志生  周立 《公路》2012,(7):101-106
嘉绍大桥处于海洋环境,承台为深埋式,对混凝土耐久性要求高。主桥单个承台C30混凝土方量近8 000m3。通过对承台大体积混凝土配合比优化、原材料控制、浇筑过程控制及混凝土养护等方面进行详细分析和总结,并通过实时的温度监测数据分析,达到了海洋环境下高性能超大体积混凝土在取消冷却水管的条件下保证温控质量的目标。  相似文献   

12.
廖维  衣千  叶兴展 《公路》2005,(5):214-216
湛江海湾大桥主墩承台混凝土方量为8047m^3,介绍了大体积承台有底套箱施工工艺、混凝土的质量控制及大体积混凝土水化热的控制等。  相似文献   

13.
刘尧  潘权  杨蕾 《公路与汽运》2023,(1):111-115
为使考虑钢筋作用的有限元计算能更合理高效地指导大体积混凝土承台的温控过程,对钢筋在混凝土承台水化热分析中的作用及简化方法进行研究。以一悬索桥索塔承台为例,建立承台素混凝土有限元模型和分离式有限元模型进行计算对比分析,结果表明可根据考虑钢筋作用的分离式模型的计算结果更准确地指导承台水化热温控过程;建立钢筋整体等效和局部等效两种承台整体式有限元模型,将整体式模型计算结果与分离式模型计算结果进行对比分析,结果表明大体积混凝土承台水化热有限元分析中,采用钢筋整体等效的简化方法,其计算结果可安全预测和指导承台水化热温控过程。  相似文献   

14.
杭州湾跨海大桥北航道桥斜拉桥承台混凝土温度裂缝控制   总被引:3,自引:1,他引:3  
斜拉桥承台一般均为大体积混凝土,因水泥水化热的作用,承台内外温差过大,易使混凝土出现早期温度裂缝。杭州湾跨海大桥主跨承台混凝土浇筑分层均较厚,为3~4.5 m,在承台施工中采取了行之有效的温控措施,有效地控制了温度裂缝,确保了承台混凝土的耐久性。  相似文献   

15.
河南信阳河大桥为独塔双索面斜拉桥 ,主塔承台混凝土总量为 386m3 。该文分析了混凝土裂缝产生的机理 ,进行了主塔承台大体积混凝土的温度应力计算 ,提出了防止温度裂缝产生的混凝土施工及温度控制措施。  相似文献   

16.
在分析大体积混凝土温度裂缝产生机理的基础上,以西江特大桥主墩承台为背景,通过采用低水化热胶凝材料体系、高效缓凝型减水剂及级配良好的碎石优化混凝土配合比,采用降低混凝土入模温度、埋设冷却水管及蓄水保温养护等温控措施,进行承台大体积混凝土施工,并对浇注后承台混凝土温度进行监控,有效避免了有害温度裂缝的产生。  相似文献   

17.
天津塘沽海河大桥为独塔斜拉桥,主塔高168m,主塔承台混凝土总量为8022m^3。简要介绍其主塔承台大体积混凝土的浇注及温度控制、养护措施等。  相似文献   

18.
王崇旭 《公路》1995,(6):37-38
珠海大桥主、副航道桥共10墩14个承台。主墩为墩身分离,承台整体式;过渡墩承台为分离式,即一个墩2个承台。呈菱形的14个承台均处于深水之中,为高桩承台,采用有底套箱封底抽水,清理桩头,绑扎钢筋,浇注承台混凝土的施工方案及工艺。承自封底按照设计要求,平面尺寸及厚度均偏大,需用较大方量的封底混凝土。经过反复研究分析,并根据我处以往有底和无底套箱的施工经验及有关资料,结合本桥施工时的水位、潮流、台风、高速船只等所产生的环境荷载力的实际情况,以及承自混凝土按两次浇注(第一次浇注高度为1.SITI,第二次浇注剩余高…  相似文献   

19.
大体积混凝土承台具有结构厚、体形大、钢筋密、混凝土用量多、工程条件和施工技术要求高等特点,除了必须满足强度、刚度、整体性和耐久性要求外,还必须控制温度变形裂缝。海上深水桥梁基础大体积承台在此特点的基础上,受海洋环境的影响,其施工工况更加复杂化。本文依托平潭海峡大桥实体工程,提出了承台施工过程的主要施工工艺,对钢套箱施工、封底混凝土施工、大体积混凝土浇注及温控等关键技术进行了系统的研究,研究成果可以指导今后同类工程大体积承台混凝土的施工。  相似文献   

20.
本文主要介绍了常熟市虞山大桥主墩承台采用混凝土套箱围堰方案进行深水承台施工,根据混凝土套箱围堰的实际受力状况建立力学模型,通过有限元的分析计算确定了混凝土套箱围堰的安全性,从而验证了混凝土套箱围堰方案进行深水承台施工的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号