共查询到19条相似文献,搜索用时 31 毫秒
1.
首先阐述了水下目标识别的研究发展和系统组成,然后提出了一种基于遗传BP算法训练神经网络目标分类器的新方法。实验结果表明采用新方法的神经网络分类器比采用改进BP算法的神经网络分类器具有更优的分类效果。 相似文献
2.
首先阐述了水下目标识别的研究发展和系统组成,然后提出了一种基于遗传BP算法训练神经网络目标分类器的新方法。实验结果表明采用新方法的神经网络分类器比采用改进BP算法的神经网络分类器具有更优的分类效果。 相似文献
3.
舰船目标自动识别通常需考虑多个特征,而复杂的特征往往需要适合的分类器与之相适应。本文借助已有的一种可组合多种特征和多种分类器的通用分类器,验证其在舰船识别中的有效性。该通用分类器将多分类问题转化为多个二分类问题,利用多个二分类器对舰船各特征进行独立识别,最后根据投票规则决定目标识别结果。本文以二分类BP网络作为多神经网络分类器的基分类器,对航空母舰、驱逐舰、护卫舰、客船、集装箱、民用货船6种船只类型进行了识别。识别结果表明,由多个二分类BP网组成的多神经网络分类器平均分类精度为89%,该通用分类器在实践中有效。 相似文献
4.
神经网络技术作为现代智能信息处理技术的主要方法之一,模拟人的神经元的生理结构模型,可自身完善和发展,在各领域都有其广泛的用途。本文对神经网络在目标识别中的应用进行了介绍。并指出目标识别在某种程度上也是一种函数逼近,并用matlab实现了BP网络的函数逼近。 相似文献
5.
神经网络在舰船噪声识别中的应用 总被引:1,自引:0,他引:1
本文基于多层前馈型网络模型发展了一种利用声纳信号进行目标识别的技术,并在对传统BP算法局限性详细分析的基础上,对其稍作改进,提出了BP-选择学习算法。实验表明,此算法对噪声信号的识别效果好于BP算法。 相似文献
6.
随着各国在海洋领域竞争的日益激烈,船舰目标自动识别技术正逐渐成为研究热点。本文利用BP神经网络对航空母舰、驱逐舰、护卫舰、客船、集装箱、民用货船6种船只类型进行分类,首先对船舰图像进行中值滤波,去除随机噪声和椒盐噪声,然后利用OTSU法将灰度图像分割成背景和目标两部分,接着对目标区域提取了Hu不变矩、边缘梯度方向直方图、周长-面积比3个特征。为了使边缘梯度方向直方图也具有旋转和尺度不变性,本文提出了一种变换方法:将直方图循环右移,直至其最大值到达直方图最右端。最后利用BP神经网络对船舰图像进行了训练和测试。测试结果表明,本文的分类算法对船舰目标的分类精度达到84%左右,有效实现了常见船舰类型的识别分类。 相似文献
7.
交互式多模型(IMM)算法是一种可以有效跟踪机动目标的滤波算法,针对其跟踪精度和计算量在很大程度上受制于模型选择和转移概率确定的问题,提出了一种利用BP神经网络修正子模型滤波结果的改进IMM算法。仿真实验表明,该方法可以使IMM算法的收敛速度加快,收敛精度提高,改善了跟踪性能,具有一定理论指导意义。 相似文献
8.
9.
基于BFGS法的BP神经网络算法研究 总被引:2,自引:0,他引:2
张伟标 《上海海运学院学报》1999,20(3):122-126
在把BFGS法运用于BP神经网络权的训练中,通过基于不同算法的神经网络对实际问题进行了学习,并根据学后获取的非线性机理结合预测的实例进行对比分析,表明基于BFGS法的BP神经网络算法对加快网络训练速度,提高网络预测的能力方面是有效的。 相似文献
10.
11.
为了准确、迅速识别空中目标类型,建立基于Elman神经网络的空中目标识别模型。该模型降低了以往空中目标识别方法中的人为因素,提高目标识别结果的可信度和快速性。通过实例验证,证明该模型的有效性和正确性。 相似文献
12.
13.
14.
基于改进BP神经网络的船舶操纵性能预报 总被引:2,自引:0,他引:2
以某单桨大型船舶在海上的回转性能为例,探讨了应用改进的BP神经网络(Back-pmpagation Neural Network)建立船舶操纵性预报数学模型的方法,并利用matlab语言对其进行了仿真。研究结果表明,改进的BP算法有更快的收敛速度和更好的计算精度。 相似文献
15.
在分析船舶交通流量特性的基础上,以船舶交通流量控制为最终目标,建立基于BP神经网络的船舶交通流量预测模型,以长江口深水航道的交通流量数据作为训练样本,进行模拟分析。预测结果与实测加权数据进行对比表明,该模型对船舶交通量的预测是有效的。 相似文献
16.
17.
18.
二手船价格是买卖二手船决策过程中非常关键的因素。为了准确地估算二手船价格,利用BP神经网络的高度非线性运算能力以及通过学习样本数据即可对事物复杂内在规律进行精确计算的特点,将BP神经网络应用于二手船价格的估算。利用从克拉克松获取的2009年到2012年120个灵便型干散货船交易数据,建立了基于船龄、船舶载重吨(DWT)、新造船价格和一年期期租费率的BP神经网络模型,网络输出结果与二手船实际交易价格的相对误差率在10%以内。 相似文献