首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct link between band structure and the ballistic transport property of full-Heusler alloys based Co2 YZ/Al/Co2 YZ trilayers (Y = Sc, Ti, V, Cr, Mn and Fe; Z = Al, Si and Ge) has been studied by firstprinciples calculations. It is found that the transport efficiency is determined primarily by three factors related to band structure: the shape of the band crossing Fermi energy E F, the distance d of the two intersection points of Co2 YZ and Al at E F, and the absolute maximum of the energy lying in the E F-crossing band, |Emax|. The transmission coefficient distribution patterns imply that the affected factor of magneto-resistance (MR) ratio is attributed to the band features around E F. In general, an intuitively illustrated diagram is proposed to clarify the relationship between the probability of electron transition and the current magnitude.  相似文献   

2.
The microstructure and hardness of conventionally solidified Ni-xSi (x = 21.4%, 22%, 24%, 26%) alloys were investigated. The solidification microstructures of different Ni-Si alloys were observed by optical microscope (OM) and scanning electron microscope (SEM) and the phase composition was indentified under the help of energy dispersive X-ray (EDX) analysis. The macro- and micro-hardness of the Ni-Si alloys at room temperature were also examined. The experimental results indicated that both the microstructure and hardness closely depended on the Si content. Due to the vast formation of primary ??-Ni31Si12 phase, the hardness of Ni-26.0%Si alloy was significantly improved compared with that of Ni-21.4%Si eutectic alloy. However, the fracture toughness was greatly weakened simultaneously. The (?? 1-Ni3Si+??-Ni31Si12) lamellar eutectoid structure formed in the primary ??-Ni31Si12 phase exhibited better ductility than single ??-Ni31Si12 phase at the cost of relatively small hardness reduction.  相似文献   

3.
The properties and electronic structure of Fe under pressures of 0–30GPa have been studied by first principles employing the density functional theory (DFT), the ultra-soft pseudo-potentials (USPP) and the generalized gradient approximation (GGA). The calculating results show that there is a structural transition from magnetic body-centered cubic (bcc) to nonmagnetic hexagonal-close-packed (hcp) structure for Fe around 11GPa pressure. There is a pseudogap both in the density of states (DOS) for bcc and hcp Fe. The pseudogap of bcc Fe is deeper and wider than that of hcp Fe. The elastic modulus is obtained by Voigt-Reuss-Hill averaging scheme. The results indicate that the elastic properties of bcc Fe enhance with pressure except for elastic stiffness constant C 11, shear modulus G and elastic modulus E at the transition pressure, while the elastic properties of hcp Fe increase linearly with pressure. Magnetic bcc Fe is ductile, and hcp Fe becomes ductile from brittle around 25GPa.  相似文献   

4.
The ultra-high-strength steel (UHSS) plays an important role in the mechanical industry because of their special performances. The machinability of 30CrMnSiNi2A steel was studied in dry milling with two different coated tools in the present work. This paper introduced that 30CrMnSiNi2A steel was a kind of difficult-to-machine materials. The results showed that the cutting force components of feed direction and cutting width direction, i.e. F x and F y , increased slightly with increasing the cutting speed and feed rate. The values of axial force component F z were much larger than F x and F y , and increased obviously with increasing the milling speed. The workpiece surface had the minimum roughness at the cutting speed of 150 m/min. The physical vapor deposition (PVD) coated ((Ti, Al)N-TiN) insert was more suitable for machining 30CrMnSiNi2A steel than the chemical vapor deposition (CVD) coated (Ti(C, N)-Al 2 O 3 ) insert. Moreover, the main failure modes of PVD-coated insert were micro-chipping and coating spalling. The wear modes of CVD-coated insert were ploughing, coating spalling, and cratering. The serious adhesive wear and the abrasion with some adhesion were the main wear mechanism of PVD- and CVD-coated inserts, respectively.  相似文献   

5.
A series of Mg-12Zn-4Al-0.3Mn (ZA124) based alloys with additions of calcium have been prepared and their microstructure and properties have been investigated. The results show that Mg-12Zn-4Al-0.3Mn alloy consists of the ??-Mg matrix and block quasicrystal and exhibits excellent creep resistance compared to commonly used AZ91 alloy. A small amount of calcium addition to the ZA124 based alloys increased the yield strenghth at both ambient and elevated temperatures as well as creep resistance, although the ductility decreased slightly. Microanalysis indicated that the addition of calcium decreased the quasicrystalline phase and caused the formation of some lamellar precipitates of Al2Mg5Zn2 with orthorhombic crystal structure. This Ca-containing Al2Mg5Zn2 phase with high stability straddled the grain boundaries and strengthened grain boundaries by inhibiting crack propagation during creep tests at elevated temperature.  相似文献   

6.
Cuprous oxide (Cu2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere. Effect of oxygen flow rate on structural and optical properties of thin films has been discussed. The results of X-ray diffraction, ultraviolet-visible spectrophotometry and atomic force micrograph indicated that the condition window for single Cu2O phase was about 3.8 to 4.4 cm3/min, and the optimum oxygen flow rate was 4.2 cm3/min. The optical band gap E g of Cu2O film was determined by using the data of transmittance versus wavelength, and slightly decreased from 2.46 to 2.40 eV with the increase of oxygen flow rate from 3.8 to 4.4 cm3/min. The Cu2O film formed at the oxygen flow rate of 4.2 cm3/min had an optical band gap of 2.43 eV.  相似文献   

7.
Zn0.95?x Co0.05Cu x O (atomic ratio, x = 0?C8%) thin films are fabricated on Si(111) substrate by reactive magnetron sputtering method. Detailed characterizations indicate that the doped Cu ions substitute the Zn2+ ions in ZnO lattice. The doped Cu ions are in +1 and +2 mixture valent state. The ferromagnetism of the Zn0.95?x Co0.05Cu x O film increases gradually with the increase of the Cu+ ion concentration till x = 6%, but decreases for higher Cu concentration. Experimental results indicate that the increase of ferromagnetism is not owing to the magnetic contribution of Cu+ ions themselves, but owing to the enhancement of magnetic interaction between Co2+ ions, which suggests that p-type doping of Cu+ ions plays an important role in mediating the ferromagnetic coupling between Co ions.  相似文献   

8.
The multi-principal high-entropy alloys (HEAs) are promising new alloys. However, it is a challenge to screen out the suitable composition from the diverse combinations. Referring to the prototype AuCu3 with AB3-L12 structure, where it becomes a face-centered cubic (fcc) structure if element A and B are the same element, the site occupying tendencies of the elements and thermodynamic functions are predicted by using the sublattice model supported with first-principles total energy calculations. By considering the Gibbs energy of formation and the configurational entropy, the fcc HEAs in available literatures are examined, and the results of the quinary system with equal-atomic composition CoFeMnNiM and the hexbasic system with equal-atomic composition CoFeMnNiSmM are reported, respectively, where the element M is selected from the rest of the periodical table. When M=Cr, Zn, Ru, Rh, Pd, Re, Os, Ir, or Pt in the quinary systems CoFeMnNiM and when M=Ru, Pd, or Pt in the hexbasic systems CoFeMnNiSmM, respectively, the alloys are recommended to be potential fcc HEAs. The new approach opens a new way to mine the rich ores of HEAs.  相似文献   

9.
In c-C4F8 and c-C4F8/CO2 mixtures, the swarm parameters including ionization coefficient, attachment coefficient and effective ionization coefficient were obtained at the ratio of the electric field strength to the gas density between 150–550 Td by the steady-state Townsend (SST) method. Static breakdown voltages at each ratio were also measured at the SST condition. The limiting field strengths were obtained by two methods: computing the density-normalized effective ionization coefficient as a function of the overall density-reduced electric field strength; and measuring static breakdown voltages as a function of the product of gas density and electrode separation. Good agreement was obtained by these two methods, which ensures the correctness of the former method. The limiting field strengths of c-C4F8 and c-C4F8/CO2 mixtures were compared with those of pure SF6, SF6/CO2 mixtures and pure c-C4F8. It is found that buffer gas CO2 does not reduce the limiting field strengths of c-C4F8 greatly, the limiting field strengths of c-C4F8/CO2 mixtures are higher than those of SF6/CO2 mixtures or even pure SF6, and so c-C4F8/CO2 mixtures are suggested to be possible substitutes for SF6. Foundation item: the National Natural Science Foundation of China (No. 50777041)  相似文献   

10.
用第一性原理研究了赝二元合金半金属磁体的电子结构和磁性质,定量地计算了态密度、离子的磁矩和能隙,定量计算的结果与实验基本一致。还给出了赝二元合金Fe_xMn_(1-x)Si从半导体到金属磁体相变的理论解释。更为重要的是:从具体的数值计算发现Fe0..5Mn0.5Si具有半金属磁体特性。  相似文献   

11.
In this study, (100)-oriented growth of Ba0.5Sr0.5TiO3 (BST) /LaNiO3 (LNO) stacks was obtained on Pt(111)/SiO2/Si substrates by r.f. magnetron sputtering. The orientation of the subsequently deposited Ba0.5Sr0.5TiO3 thin film was strongly affected by the LNO under layer, and the BST thin film deposited on the (100)LNO-coated Si substrate was also found to have a significant (100)-oriented texture. Effects of LNO interlayer on the dielectric properties of BST thin films were investigated. As a result, the tunability of BST thin film was greatly improved with the insertion of (100)-oriented LNO under layer with proper thickness. Foundation item: the National Key Lab of Nano/Micro Fabrication Technology (No. 9140C 790310060C79) and the National Natural Science Foundation of China (No. 60701012)  相似文献   

12.
Red mud-fly ash based cementitious material mixed with different contents of oil shale calcined at 700°C is investigated in this paper. The effect of active Si and Al content on the solidification of Na+ during the hydration process is determined by using X-ray diffraction (XRD), 27Al and 29Si magic-angle-spinning nuclear magnetic resonance (MAS-NMR), infrared (IR), scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the content of oil shale has a remarkable effect on the solidified content of Na+. The hydration process generates a highly reactive intermediate gel phase formed by co-polymerisation of individual alumina and silicate species. This kind of gel is primarily considered as 3D framework of SiO4 and AlO4 tetrahedra interlinked by the shared oxygen atoms randomly. The negative charges and four-coordinated Al inside the network are mainly charge-balanced by Na+. The solidifying mechanism of Na+ is greatly attributed to the forming of this kind of gel.  相似文献   

13.
The swarm parametes for c-C4F8/CF4 mixtures, including the density-normalized effective ionization coefficient, drift velocity and mean energy were calculated using Monte-Carlo method with the null collision technique. The overall density-reduced electric field strength could be varied between 150 and 500 Td, while the c-C4F8 content in gas mixtures is varied in the range of 0–100%. The value of the density-normalized effective ionization coefficient shows a strong dependence on the c-C4F8 content, becoming more electronegative as the content of c-C4F8 is increased. The drift velocity of c-C4F8/CF4 mixtures is more affected by CF4. The calculated limiting field strength for c-C4F8/CF4 mixtures is higher than that of SF6/CF4. Foundation item: the National Natural Science Foundation of China (No. 50777041)  相似文献   

14.
Direct electrochemical extraction of Ti5Si3 from pressed cathode pellets comprising of powdered Ti/Sicontaining metal oxide compounds was investigated by using molten salt electro-deoxidation technology.Three groups of mixtures including TiO2 mixed with SiO2,Ti-bearing blast furnace slag(TBFS) mixed with TiO2, and TBFS mixed with high-titanium slag(HTS) were prepared at the same stoichiometric ratio(Ti:Si=5:3) corresponding to the target composition of Ti5Si3,and used as the starting materials in this experiment,respectively. The pressed porous cylindrical pellet of the Ti/Si-containing compounds served as a cathode,and two different anode systems,i.e.,the inert solid oxide oxygen-ion-conducting membrane(SOM) based anode system and graphite-based anode system were used contrastively.The electrochemical experiment was carried out at 900-1050℃and 3.0-4.0 V in molten CaCl2 electrolyte.The results show that the oxide components were electro-deoxidized effectively and Ti5Si3 could be directly extracted from these complex Ti/Si-containing metal oxide compounds.  相似文献   

15.
Layered solid solution material Li1.2Ni0.2Mn0.6O2 is synthesized and the AlF3 is added to improve the electrochemical performance. X-ray diffraction (XRD) results show that the Li1.2Ni0.2Mn0.6O2 samples exhibit layered characteristics. The AlF3 additive is detected by transmission electron microscope (TEM) technology. The electrochemical tests show that Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added delivers better discharge capacity (240mA· h/g), first coulomb efficiency 79.2%, cyclic performance (capacity retention ratio of 100.6% after 50 cycles), and rate capacity (68mA · h/g at 10 capacity (C)) than the pristine sample. Electrochemical impedance spectroscopy (EIS) results show that the charge transfer resistance of Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added increases slower than that of pristine Li1.2Ni0.2Mn0.6O2 after cycling, which is responsible for better cyclic and rate performance.  相似文献   

16.
用第一性原理研究了RCrO4(R=Er和Tm)氧化物的电子能带结构和半金属铁磁性,发现锆石相的RCrO4是优质的半金属铁磁材料,具有达到0.35eV的半金属能隙。为了研究磁相互作用的机制,采用密度泛函理论和广义梯度近似计算电子能带结构、态密度和自发磁矩,发现其磁性来源于R的f轨道电子、Cr的d轨道电子和O的p轨道电子的自旋极化。穿过费米能级的能带主要来源于R(4f)-O(2p)-Cr(3d)的杂化能级,并对磁性和电子输运性质起着关键作用。  相似文献   

17.
This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn slag is characterized by multiangular shape which consists of α′-C2S, C3MS2, CaO·MnO·2SiO2 and C2AS. Experimental results show that the Mn slag has potential hydraulic reactivity. Concrete made with Mn slag as supplementary cementitious materials (SCMs) exhibits very low strength loss and weight loss in the synthetic seawater corrosion and freezing-thawing cycle tests. The research provides useful reference for knowing about Mn slag and for applying Mn slag to improve the durability of concrete.  相似文献   

18.
A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.  相似文献   

19.
Electrolytic manganese residue(EMR) is generated from electrolytic manganese metal(EMM) industry, and its disposal is currently a serious problem in China.The EMR were calcined in the interval 100—900℃to enhance their pozzolanic activity and characterized by the differential thermal analysis-thermogravimetry(TGDTA), X-ray diffraction(XRD),infra-red(IR) and chemical analysis techniques with the aim to correlate phase transitions and structural features with the pozzolanic activity of calcined EMR.Prom the phase analysis and compressive strength results,it is found that the EMR calcined within 700—800℃had the best pozzolanic activity due to the decomposition of poorly-crystallized CaSO4 under the reducing ambient created by the decomposition of(NH42SO4.The appearance of reactive CaO mainly contributes to the good pozzolanic activity of EMR calcined within 700—800℃.The crystallinity of Mn3CO4 increases leading an unfavourable effect on the pozzolanic behaviour of EMR calcined at 900℃.The developed pozzolanic material containing 30%(mass fraction) EMR possesses compressive strength properties at a level similar to 42.5# normal Portland cement,in the range of 41.5—50.5 MPa.Besides,leaching results show that EMR blend cement pastes have excellent effect on the solidification of heavy metals.  相似文献   

20.
The effect of La addition on the structure and electrochemical properties of amorphous LaMg11Zr+200Ni (LaMg11Zr: Ni = 1: 2, m: m) hydrogen storage alloy prepared by mechanical alloying was investigated systematically. The results show that the alloys have an amorphous structure after 20 h ball-milling and the particles are significantly refined with the addition of La. The electrochemical tests indicate that the charging resistance of the alloy electrodes decreases with the addition of La. The maximum discharge capacity of the alloy electrodes increases with the increase of La addition, while the cyclic stability and high-rate discharge performance increase firstly and then decrease as the La content increases. When the mass fraction of La is up to 5%, the maximum discharge capacity after charging/discharging of 30 cycles of the alloy electrode is increased from 576.2 to 597.5 mA· h/g, and the capacity retention rate and high-rate dischargeability (HRD) of the alloy electrode are increased by 20.5% and 29.4% respectively compared with those of the alloy electrode without the La addition, exhibiting the best comprehensive electrochemical performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号