共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
为解决传统船舶图像增强算法应用于夜间拍摄时存在图像分辨率较低的不足,提出了基于FPGA的夜间舰船图像增强算法。引入FPGA对夜间图像的灰度调节方式进行改进,依托夜间图像的滤波处理计算以及锐化计算,完成了提出的基于FPGA的夜间舰船图像增强算法设计。实验数据表明,针对夜间拍摄图像,提出的夜间船舶图像增强算法较传统船舶图像增强算法,图像分辨率提高24.64%,适合对船舶夜间图像进行分析计算。 相似文献
4.
针对当前增强技术存在的区域过渡不自然、块效应、信息丢失严重等问题,以改善舰船视觉图像质量为目标,设计一种复杂环境下的舰船视觉图像增强技术。首先对当前舰船视觉图像增强技术的研究现状进行分析,找到引起不足的因素,然后对舰船视觉图像进行分块操作,对每一个子块进行变换,然后通过Harr变换的方法计算不同子块间的相关度,确定图像增强系数,根据图像增强系数对舰船视觉图像进行自适应增强,最后对增强后的舰船视觉图像进行亮度调度,使图像更加清晰,视觉效果更佳。采用具体舰船视觉图像对增强技术的性能进行测试与分析,实验结果表明,本文方法的舰船视觉图像效果得到了极大改善,舰船视觉图像信噪比、亮度和对比度均要优于对比技术,为舰船视觉图像增强提供了一种新的技术。 相似文献
5.
当前舰船图像拼接技术存在拼接准确率低、拼接速度慢等问题,为了提高舰船图像拼接精度,设计了基于图像增强技术的舰船图像拼接方法。首先对当前舰船图像拼接方法进行分析,得到舰船图像拼接准确率低的原因,然后采用图像增强技术对原始舰船图像进行预处理,提高舰船图像的清晰度,并计算舰船图像的分块邻域梯度向量,得到舰船图像的初始拼接结果,最后去除舰船图像初始拼接结果中的拼接错误,并引入聚类分析算法对舰船图像拼接结果进行优化。舰船图像拼接仿真测试结果表明,本文方法可以消除图像相似性对拼接结果的不利影响,可以进行高精度的舰船图像拼接,并且减少了舰船图像拼接时间,舰船图像拼接速度要快于当前其他舰船图像拼接方法,获得了令人满意的舰船图像拼接结果。 相似文献
6.
7.
8.
《舰船科学技术》2015,(9):181-185
基于视觉图像处理方法实现对舰船目标的跟踪识别,提高对舰船目标的搜索和打击能力。传统方法采用舰船目标轮廓亮点检测方法实现对目标的视觉搜索,在图像模糊和背景干扰较强时,检测效果不好。本文提出一种基于相邻帧补偿和尺度不变特征变换的舰船视觉搜索跟踪算法。为提高舰船目标图像视觉特征采集的清晰度和稳定性,采用电子稳像技术对舰船视觉信息采集进行直方图均衡处理,采用尺度不变特征变换SIFT技术对舰船目标进行角点特征提取。采用相邻帧补偿技术进行背景干扰滤波,在相邻两帧之间求解舰船的运动参量,实现对舰船目标的视觉搜索和跟踪。仿真实验表明,采用该算法实现对舰船目标的视觉搜索跟踪,舰船视觉特征的稳像性能较好,对舰船目标的准确识别率较高,展示了较好的应用价值。 相似文献
9.
为保证不同海上环境下,舰船无线传感网络目标跟踪的可靠性,提出基于Retinex算法的舰船无线传感网络目标跟踪方法.采集舰船目标图像,采用改进的Retinex算法增强舰船目标图像,提升图像细节和质量,通过无线通信方式进行图像传输,依据摄像头标定原理转换目标图像坐标为世界坐标系坐标,获取舰船目标的实际位置,完成舰船无线传感... 相似文献
10.
11.
12.
为了更好的识别船舶图像信息,提出基于卷积神经网络的船舶图像增强方法,利用卷积神经网络技术对船舶图像特征进行采集和建模,并对采集到的数据进行降噪,再根据图像颜色特征进行图像缺陷修复和图像的逆向恢复处理,从而获得高品质的船舶图像。最后通过实验证实,卷积神经网络能够有效改善船舶图像的显示质量,满足传播图像增强的设计目标。 相似文献
13.
为准确实现船舶图像匹配,提出基于视觉传达技术的船舶图像匹配方法。考虑人眼的激励感知与抑制感知状态,在脉冲耦合神经网络内添设侧抑制信号等感知函数,实现低对比度的船舶图像增强处理;采用基于灰度差值直方图的特征提取方法判断增强后船舶图像边缘的粗细程度,提取船舶图像边缘特征;选取斯皮尔曼等级相关系数确定原始船舶图像与待匹配船舶图像的相关系数,以此判断船舶图像间的匹配度。测试结果表明,本文方法对简单与复杂背景的船舶图像均能实现图像增强,并充分获取图像内的边缘信息,实现准确的图像匹配。 相似文献
14.
视觉传达技术是数字化环境下快速发展的科学技术,在舰船安防监控中,亟需采用视觉传达技术修复模糊的舰船图像,去除图像非均匀噪声,提高舰船图像分辨率。本文基于视觉传达效果视角,将视觉传达技术应用到提取舰船图像特征信息、建立舰船图像优化模型、优化处理雾天舰船图像和舰船全景图像四个方面,提出舰船图像优化方案,并通过实验论证优化方案的图像效果,实验结果表明舰船图像优化能够有效降低峰值信噪比,保证图像的清晰度。 相似文献
15.
16.
高斯模糊下传统舰船图像自适应细节层次感会降低,图像细节刻画不明显,为此提出舰船图像自适应细节增强方法。设计自适应UM细节图像增强方法,确定自适应增益系数,对细节层次感进行区域规划,设计自适应拉低对比度区域增强机制,提升图像细节刻画能力;通过图像扩张对细节板块化颜色校正,保证呈现方式具备明显的色彩对比,对图像进行灰度计算,实现图像自适应细节增强。实验结果表明,设计方法能够增加图像自适应细节的层次感以及细节表现力。 相似文献
17.
《舰船科学技术》2021,(2)
传统舰船图像低照度增强算法多为单一增强算法,因此在对图像动态范围处理上存在一定误差,导致动态范围外的图像色域噪点处理效果不佳,图像整体增强效果无法达到舰船图像应用要求。为了获得低照度下舰船图像的最佳增强效果,提出低照度的舰船图像增强研究。首先,对低照度图像建立Retinex模型,获得低照度图像增强的理论基础数据;接着将Retinex模型参量引入低照度舰船图像,建立图像光照基础模型,根据光照基础模型获得的各图层光照分布状态,对其亮度进行调整,滤除图层噪点;然后,通过神经网络算法,对增强图像图层进行重建计算,完成低照度舰船图像增强计算。最后,通过对比实验数据,证明提出方法能够提升低照度舰船图像增强处理效果。 相似文献
18.
图像分割是视觉检测领域中的重要环节。由于舰船环境和图像数据的复杂性,现阶段舰船图像自动分割技术中的抗光照性能差、精度低以及边缘模糊等问题仍普遍存在。如何有效完成对舰船图像进行自动分割成为一大难题。为了有效解决上述问题,对当前图像分割方法进行深入的研究和调查,提出通过自适应阈值法的舰船图像自动分割方法,在总结和分析了现有自适应阈值分割算法存在的优点和局限性后,给出了自适应阈值图像分割法的改进方案,以便从复杂的舰船图像背景中分离出目标区域,有效解决当前图像分割技术中光照不均匀、边缘模糊等问题。为验证方法有效性进行了仿真实验,实验结果证实该方法性能效果相对较好,充分满足对复杂舰船图像进行分割的设计目标。 相似文献