首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为了延长大秦重载铁路大修换轨周期,在介绍国内外相关规定的基础上,按不同情况,重点对大秦重载铁路重车线钢轨重伤率进行了统计分析,对其影响因素进行了讨论.结果表明,通过总重1 000 Mt左右时,2005年铺设钢轨重伤严重区段直线钢轨总的累计重伤率为16.2处/km,钢轨总的重伤率为28 2处/km.通过采用净化钢质、研发使用高性能钢轨、按廓形及时打磨钢轨等技术措施,2007年铺设上道的U75V钢轨重伤率明显下降,当通过总重约1 680 Mt时,直线钢轨总的累计重伤率为6.2处/km,钢轨总的重伤率为9.6处/km.结合大秦铁路实际情况,大修换轨周期可暂按直线钢轨总的重伤率<10处/km来考虑.  相似文献   

2.
针对我国高速铁路钢轨预防性打磨周期问题,应用测试分析方法,全面跟踪测试和分析了按60D和60N目标廓形打磨后廓形、磨耗、光带、母材硬度及焊接接头平直度变化,分析得出变化规律。结合高速铁路轮轨关系研究成果、路情、钢轨打磨实践,提出预防性打磨周期:已开通运营的高速铁路,原则上每60~90 Mt通过总质量进行一次钢轨预防性打磨,年通过总质量15 Mt以上线路一般不宜超过4年,仅运行动车组的线路,光带宽度达到40 mm应及时进行钢轨预防性打磨。研究成果为钢轨使用和管理部门制定合理预防性打磨周期提供了依据。  相似文献   

3.
基于钢轨磨耗、钢轨重伤、换轨修理、线路运营等数据,分析曲线段外轨侧面磨耗和直线段(包括大半径曲线段)钢轨重伤量随累计通过总质量的发展规律并建立预测模型,提出朔黄重载铁路钢轨换轨周期建议值。结果显示:对于半径R≤800 m的曲线段,侧面磨耗是钢轨服役寿命的决定因素;对于直线段和R> 800 m的曲线段,钢轨寿命由钢轨重伤量决定。本文建立的预测模型能够有效预测钢轨磨耗、钢轨重伤量的发展规律。对于R≤400 m的曲线段,换轨周期(服役寿命)建议不超过通过总质量700 Mt;对于400 m 800 m的曲线段,换轨周期建议不超过通过总质量2 000 Mt。  相似文献   

4.
广州地铁所辖的市域快轨线路是国内首条速度160 km/h的全地下隧道市域快线,在运营过程中出现不同程度的钢轨波磨病害,据统计易出现钢轨波磨病害区段为长大区间直线区段、进出站台时的加减速区段、部分曲线区段,一般平均波深为0.07 mm,波深超过0.04 mm的钢轨波磨一般延展长度为1~1.5 km。针对此问题,文章对新的打磨需求进行总结分析,对GMC-20国产化钢轨打磨车开展应用研究,通过优化打磨模式,采用打磨3遍和抛光1遍的方法,在单次作业点内可完成1~1.5 km钢轨打磨作业,能够快速高效的消除钢轨波磨病害,提高打磨效率和打磨质量,同时打磨效果能满足运营需求。  相似文献   

5.
为了更好地进行有砟轨道大修决策,本文对国内外有砟道床的大修时机判定方法、道床状态的检测方法及合理评价指标进行分析,考虑轨道质量指数的劣化速率、道床脏污程度、线路通过总质量及轨道刚度均匀性四项因素,提出了道床状态综合评价指标——道床健康指数。结果表明:线路累计通过总质量及道床脏污率是目前道床大修时机的主要判定依据;基于探地雷达的有砟道床脏污连续检测及评估技术可为道床大修时机的判定提供重要依据,但需进一步考虑道床脏污成分的影响;轨道刚度是影响维修工作量的主要因素,可通过加载车进行连续检测,但需研究不同线路运营条件下刚度合理评价标准;道床健康指数计算结果与实际情况一致,可以用来评价道床状态。  相似文献   

6.
针对朔黄铁路半径400 m曲线区段的钢轨波磨问题实施了个性化钢轨廓形打磨,基于C80货车和曲线线路参数建立了车辆-轨道耦合动力学模型,仿真研究了钢轨打磨前后各项车辆动力学性能、曲线通过能力,给出了波长200~500 mm时打磨前后波深安全限值。结果表明:钢轨打磨很难彻底消除波长300 mm以上的波磨,但可以大幅降低轮轨力、轮轨蠕滑力、车体和侧架振动加速度等动力学指标;钢轨打磨后曲线上股轮轨接触形式由轨顶和轨侧两点接触变为贴合式接触,且上下股轮径差增大,车辆通过能力和安全性提升,钢轨磨耗指数显著降低,相较打磨前波深安全限值提升约0.2 mm。  相似文献   

7.
定期打磨钢轨可降低钢轨粗糙度,进而有效降低轮轨滚动噪声和车内噪声。针对某区段钢轨波磨导致的异常车内噪声问题,对该区段的钢轨波磨及客室与司机室的车内噪声进行现场测试和分析。研究结果表明:钢轨打磨前的司机室和客室的噪声主频段为420~670 Hz,与地铁列车通过该区段波长为25 mm和40 mm波磨时的通过频率基本一致;钢轨打磨后,车内噪声明显降低,客室噪声幅值降低了11.4 dB(A),司机室噪声幅值降低了9.8 dB(A)。针对车内噪声控制提出钢轨打磨限值:当钢轨粗糙度在大部分频带范围内超过钢轨粗糙度限值3 dB或6 dB时,建议对该钢轨进行打磨。  相似文献   

8.
在北京地铁 6 号线路上选取一段典型的波磨区段,对其开展修理性打磨,并对打磨前后钢轨表面不平顺进行测试和对比分析,分析结果表明:该区段波磨典型的波长为 63 mm,其中曲线内轨波磨较为严重;修理性打磨可以有效消除 63 mm 波长的典型钢轨波磨。然后对打磨质量进行量化评估,得出修理性打磨后钢轨表面不平顺状态满足验收标准。  相似文献   

9.
为得到客货共线铁路列车通过总重对钢轨寿命的影响规律,对京广铁路下行K807+000—K1110+000区段钢轨伤损数据进行统计分析,并以实际工况下列车通过轴重为荷载条件,建立钢轨三维实体有限元模型,对钢轨在循环荷载作用下的疲劳寿命进行研究。研究结果表明:随着列车通过总重的增大,钢轨伤损数量以及增长速率呈非线性增加,在200 Mt时增长速率有一突变;钢轨累计重伤率与列车通过总重符合幂函数关系,利用拟合公式预估钢轨寿命为10.62亿t~16.03亿t;在实际轮载条件下,钢轨疲劳寿命次数为4841万次,换算为列车通过总重后与统计分析结果吻合。研究结论可为线路设备维护决策和线路大修周期界定提供技术理论支撑。  相似文献   

10.
为解决大包铁路客货混运重载运输条件下钢轨长期适应性问题,从钢轨疲劳伤损、曲线钢轨磨耗和钢轨接头伤损方面进行论述和分析。根据现场调研及动态测试结果,提出大包铁路提升钢轨等级、强化小半径曲线、道岔等特殊区段轨道结构等强化措施;建议新建列车轴重25 t及以上的线路应铺设75 kg/m钢轨或60 kg/m及以上高纯度钢轨,并铺设跨区间无缝线路,按《铁路线路修理规则》规定的修理周期进行大型机械养护维修作业。  相似文献   

11.
通过分析国内外换轨周期模式,提出了普速铁路在役钢轨服役状态评估方法和参数,建立了跟踪分析试验段。运用试验段数据统计分析了自上道以来的钢轨伤损与累计通过总质量的关系并掌握了钢轨打磨和使用情况。应用所提出的钢轨服役状态评估方法和参数将试验段原定换轨周期由累计通过总质量7亿t延长到累计通过总质量近10亿t,并分析了换轨周期延长后的经济效益。研究成果为钢轨使用和管理部门延长钢轨使用寿命提供了分析方法和范例。  相似文献   

12.
针对地铁运营中存在的钢轨波磨问题,对短枕式整体道床地段开展钢轨波磨特征和动态响应测试,分析钢轨波磨产生原因和影响,并建立车辆-轨道耦合动力学模型,分析了不同钢轨波磨参数对车辆动力响应的影响.研究表明:钢轨波磨在小半径曲线段更为严重,外侧钢轨波磨相对内侧存在滞后现象,主波长在30~63 mm;短枕式整体道床在400 Hz...  相似文献   

13.
对南京地铁1号线钢轨的使用状况和轨道设备病害进行概略性的阐述,并以此对地铁轨道设备的大修内容、分类及大修周期的确定进行初步的探讨,提出全面或成段更换钢轨是地铁轨道大修的主要内容。针对换轨大修可采取的基地焊接和现场焊接两种方式,着重从适用范围、人员组织、设备配置、造价等方面对其各自的优缺点进行分析比较,最后提出南京地铁今后适宜采取的换轨大修方式,主要包括全面或成段更换钢轨(包括弹条)、成组更换新道岔及新岔枕、道口大修、全面更换橡胶件等项目。  相似文献   

14.
研究分析北京市城市轨道交通地下线正线应用有砟轨道结构技术措施。对地下线正线应用有砟轨道的结构形式、部件选型进行设计分析,并辅以模拟计算手段对道床部分典型动力特性进行分析,借鉴国铁养护维修典型年运量理论对地下线有砟轨道养护维修工作量进行分析,认为道床几何尺寸、纵横阻力等稳定性指标能够满足相关规范要求,设备选型合理可行,养护维修工作量适中,认为北京市城市轨道交通地下线正线应用有砟轨道技术具备可行性和重要意义。  相似文献   

15.
针对钢弹簧浮置板道床结构因采用混凝土短轨枕而难以到达设计减振效果的问题,借鉴高速铁路建设经验,将双块式轨枕与点支撑道床有效结合,研发出适用于城市轨道交通的新型双块式点支撑浮置板道床结构。通过数值模拟和现场试验,对该系统的减振效果进行验证。结果表明:双块式点支撑浮置板道床结构有利于轨底坡的保持,便于轨排的组装,可以改善轮轨受力;车速80~120 km/h时,双块式点支撑浮置板道床结构试验段的减振效果达到14 dB以上,减振效果良好;该系统具有显著的经济和社会效益。  相似文献   

16.
高速铁路钢轨打磨关键技术研究   总被引:2,自引:0,他引:2  
根据我国高速铁路上运行车辆的车轮型面设计钢轨的预打磨轨头廓面.按照该预打磨轨头廓面对钢轨进行预打磨,可有效改善轮轨的接触状态.给出了适用于不同车轮型面的钢轨预打磨深度理论设计值以及适用于LMA和S1002G车轮型面的钢轨预打磨轨头廓面.关于预打磨后的实际轨头廓面与预打磨设计廓面的误差,在轨距角部位应控制在-0.1~0.3 mm范围内.建议我国高速铁路的钢轨打磨周期为每30~50 Mt通过总重打磨1次,对于无砟轨道取上限,有砟轨道取下限;关于60kg·m-1钢轨的预打磨深度,在轨距角部位应达到0.8~1.5 mm,在主要轮轨接触部位应大于0.3 mm;钢轨打磨后的表面粗糙度应小于10μm;采用48磨头打磨车时应打磨3~4遍,采用96磨头打磨车时应打磨2遍.  相似文献   

17.
秦宪国 《铁道建筑》2020,(2):120-123
基于轨道不平顺指标与线路捣固作业维修质量的相关性分析结果,设计神朔铁路线路捣固作业决策方法。为说明该决策方法的有效性,利用神朔铁路河西运输段2014年9月—2016年12月共计31次的轨检车检测数据以及该时段内相应的捣固作业维修数据进行实例研究,并与神朔铁路传统的捣固作业决策方法进行对比。结果表明:基于该决策方法的捣固作业策略对神朔铁路捣固作业量和捣固成本的降低效果显著,能改进神朔铁路线路捣固作业计划的编制方法。  相似文献   

18.
通过对京广高速铁路武广段惯性晃车地点进行综合分析,然后进行了设备精调精整,但效果并不理想。后经轨面光带调查分析,发现轨面光带发散、突变、宽度较宽现象比较普遍。于是选取了一段线路设备进行试打磨,发现大机打磨作业对改善列车运行品质能够起到良好效果。为了指导生产和实践,在试打磨、讨论、调研等综合分析的基础上,对现有的钢轨大机打磨作业进行标准化、程式化,并经实践证明效果显著。  相似文献   

19.
随着高速铁路建设的发展,许多新材料、新设备应用于铁路运输房屋建筑,而房建设备大修维修周期还是沿用《铁路房屋建筑物大修维修规则》,已满足不了当前新设备的维修要求。故此文在阐述房建设备大修维修周期现状及存在不足的基础上,对修订或制定新的铁路运输房建设备大修维修周期的必要性进行探讨。通过分析与探讨,对编制完成的《铁路运输房建设备大修维修规程》送审稿中有关大修维修周期的内容进行介绍。  相似文献   

20.
齿轨铁路采用齿条与齿轮相啮合的方法,以提高线路的爬坡能力。齿轨铁路轨道由齿轨系统、钢轨、轨枕、道床等组成,适用于以旅游观光为主的大坡度山区。具有爬坡能力强、占地面积小、建设对环境破坏小等优点,已在国外得到大量使用,我国在多个旅游地也规划了齿轨铁路。系统研究齿轨系统的种类、轮轨-齿轨过渡装置、齿轨轨下结构,研究表明:在齿轨系统选择时,应综合考虑轨道下部基础、线路建设环境、施工难易程度等因素;过渡装置以三段缓冲入齿装置为最优;由于齿轨轨枕受力的特殊性,使得钢枕适用于齿轨铁路,对钢枕结构优化可延缓道砟劣化,提高道床稳定性,减少养护维修费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号