首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
选取某线路2条磨损较为严重的500m半径曲线钢轨(曲线A及曲线B)作为研究对象,进行针对性打磨方案设计,并采用多体动力学软件UM建立车辆-轨道多体系统动力学模型,研究分析钢轨打磨对小半径曲线车辆动力学特性影响。结果表明:打磨后钢轨廓形得到改善,轨面波磨及掉块得到较好整治,曲线A及曲线B钢轨质量指数TQI均有显著下降,最大值分别下降32.40%、23.49%;打磨后曲线A及曲线B等效锥度显著降低,当横移量为0~10mm内,等效锥度均在0.15以下;曲线A及曲线B左右股与车轮接触区域相对打磨前更加均匀,3点接触得到较好处理;打磨后1~8位车轮与曲线A及曲线B钢轨廓形接触时接触斑内纵/横向蠕滑率最大值、磨耗功最大值、轮重减载率最大值均有显著降低,轮轨接触关系、轮轨磨耗及车辆运行安全性得到较好的改善;同时,车辆通过曲线A及曲线B时车体垂向/横向加速度频率及幅值降低,横向/垂向加速度最大值分别减小46.74%/80.04%、46.33%/78.96%,车辆运行稳定性得到提升。  相似文献   

2.
为探究货运线路中曲线区段磨耗钢轨的打磨方法对钢轨的服役寿命及列车运行安全的直接影响,针对曲线区段钢轨打磨廓形设计方法开展研究。设计多段圆弧和半径等多参变量的平滑设计方法,构建钢轨廓形描述模型,结合车辆-轨道耦合动力学及轮轨接触分析,设计不同权重系数,建立缓和曲线及恒定半径曲线段的磨耗钢轨打磨廓形的多目标函数,采用优化算法求解并进行对比分析。研究结果表明:与传统单一打磨廓形相比,设计廓形对缓和曲线段和恒定半径曲线段,钢轨材料去除量分别降低了39.02%和20.47%;动力学性能显著提升。在缓和曲线段和恒定半径曲线段的交接处,轮对横移量最高降低了89.45%,过渡更加平缓。轮轨接触几何分布均匀,改善了车辆入弯前后的运行性能和曲线通过性能。轮轨接触斑面积增加,且随轮对横移量变化平缓,最大Mises应力和最大法向接触应力相对于优化前均有明显改善。采用双打磨廓形设计能够有效延长曲线区段钢轨使用寿命。  相似文献   

3.
针对高速铁路钢轨打磨过程中周期制定的问题,对京广高速铁路郑武(郑州—武汉)段钢轨廓形进行了长期跟踪观测,选取长10 km、年通过总质量21 Mt的观测区段,计算分析了钢轨廓形磨耗速率和实测廓形的等效锥度变化.结果表明:观测区段在打磨后28个月内,钢轨廓形垂直磨耗增加速率为0.09 mm/年,钢轨廓形面积磨耗速率为2.5...  相似文献   

4.
对打磨前后的高速铁路道岔打磨受限区特征断面钢轨廓形进行测量,建立车辆-道岔耦合动力学模型仿真模拟列车通过打磨前后道岔打磨受限区的动力学特性,并对车辆动力学性能进行现场实测。结果表明:廓形打磨后,道岔打磨受限区内侧工作边明显低于打磨前,且降低值得到明显优化,全新车轮及磨耗车轮与打磨后的道岔受限区特征断面接触时的等效锥度均得到明显改善且均在理想范围内;在不同运行速度下,全新车轮及磨耗车轮与打磨后的道岔受限区特征断面接触时,构架及车体横向加速度均减小,列车轮轨接触关系得到优化,列车运行横向稳定性得以提升。现场实测结果进一步验证了廓形打磨对列车运行横向稳定性的改善作用。  相似文献   

5.
选取半径300 m小半径曲线作为试验曲线,从轮轨接触几何特性、车辆动力学特性、现场打磨效果3个方面分析了周期性钢轨廓形打磨对小半径曲线寿命的影响。结果表明:周期性廓形打磨后轮轨间等效锥度显著改善;列车1~4位车轮与9#钢轨接触时磨耗功、最大脱轨系数均较为理想;周期性廓形打磨后钢轨轨面未出现比较严重的病害,侧磨速率显著降低,轨道质量指数有明显改善,有助于延长钢轨使用寿命。  相似文献   

6.
针对大准铁路小半径曲线钢轨伤损和磨耗严重开展钢轨打磨技术研究,进行打磨模板设计。本文通过分析实测轮轨廓形的磨耗和接触特征,确定钢轨打磨目标廓形,据此设计得到适合于大准铁路小半径曲线的钢轨打磨廓形,并采用重载货车-轨道动力学模型和轮轨接触有限元模型进行理论计算与分析。结果表明:车轮与实测钢轨廓形匹配时,上股易形成过共形接触,下股接触点偏向轮缘根部,形成反向轮径差,降低曲线通过性能;车轮与打磨廓形匹配时轮轨接触状态得到明显改善,轮对冲角、轮轨横向力、脱轨系数、磨耗指数和轮轨接触应力均显著降低,大幅提高了曲线通过性能。  相似文献   

7.
针对某高速铁路动车组车体抖动问题,采集不同线路工况下车体振动加速度及平稳性数据、不同磨耗车轮踏面及打磨前后钢轨廓形,研究不同线路工况、车轮踏面和钢轨廓形对动车组车体振动特征影响,研究镟轮后不同时期车轮踏面和打磨前后钢轨廓形匹配下轮轨几何接触关系。同时,采用实际线路及动车组车辆参数,基于多体动力学软件Simpack建立包含实测车轮踏面和钢轨廓形的车辆-轨道耦合系统动力学模型,计算车轮镟修和钢轨打磨对车辆关键动力学指标的影响。研究结果表明:该高速铁路动车组车体抖动主要发生在隧道工况内,体现为垂向和横向的综合异常振动;随车轮踏面磨耗增加,实测车体振动加速度逐渐增大,轮轨接触关系逐渐恶化,与未廓形打磨钢轨匹配时尤为明显;钢轨打磨可以有效抑制等效锥度随车轮踏面磨耗增加的不断增大,有效改善轮轨接触关系。车轮镟修和钢轨廓形打磨均可降低等效锥度,有效整治高速铁路动车组车体抖动。  相似文献   

8.
为了研究钢轨廓形打磨对小半径曲线轮轨关系和作用力的影响,对成渝铁路钢轨打磨前后的轮轨接触关系开展分析,对车辆轮轨作用力进行现场测试。测试结果表明:钢轨廓形打磨后,货运列车和客运列车通过小半径曲线时的轮轨垂向力均值降低幅度分别达到13.8%和8.4%,轮轨横向力均值降低幅度分别达到19.7%和33.5%,脱轨系数均值降低幅度最大分别达到16.0%和7.4%,轮重减载率均值降低幅度最大分别达到23.1%和27.3%;钢轨打磨后的轨面状态得到有效改善,轮轨接触分布更为合理。钢轨廓形打磨可有效提升列车曲线通过性能,对于轮轨关系和钢轨受力状态的改善具有重要意义。  相似文献   

9.
对个性化钢轨廓形打磨方法进行了阐述,并结合实际案例对不同线路实施廓形打磨后的效果进行了分析。分析结果表明,钢轨廓形打磨能够有效改善轨道动力学性能、车辆舒适度指标和轮轨接触关系,在减小轮轨滚动摩擦阻力的同时达到节能降耗的目的。同时廓形打磨能够大幅减小小半径曲线钢轨磨耗速率,且初始磨耗较小时开展廓形打磨效果更佳。  相似文献   

10.
随着神朔铁路运量不断增加,钢轨病害呈快速发展趋势,养护维修工作量明显增加。本文基于钢轨病害特点及实际运营环境,提出适用于神朔铁路的钢轨打磨廓形和工艺。通过对比打磨前后的钢轨病害情况、轨检数据和轮缘磨耗数据发现:钢轨打磨可使小半径曲线上股钢轨磨耗速率降低53%,下股钢轨磨耗速率降低64%,并可有效去除钢轨表面接触疲劳伤损并控制其发展速率;钢轨打磨使得轮缘磨耗速率由打磨前的0.085 mm/万km降至打磨后的0.057 mm/万km,平均降幅为32.9%。因此,钢轨打磨不仅能有效去除钢轨接触疲劳伤损,而且可以明显降低钢轨和轮缘磨耗速率。  相似文献   

11.
对京津城际发生转向架横向失稳报警故障的动车组进行车轮踏面廓形测试,并在京津城际全线对列车进行构架横向稳定性测试,调研试验线路情况。结果表明,发生故障的车辆车轮存在凹型磨耗,发生故障的区段的钢轨磨耗严重,导致轮轨关系恶化,增加了发生转向架横向失稳报警的可能性。提出对故障报警车辆进行车轮镟修以及对报警区段钢轨进行打磨的解决措施。  相似文献   

12.
针对朔黄铁路半径400 m曲线区段的钢轨波磨问题实施了个性化钢轨廓形打磨,基于C80货车和曲线线路参数建立了车辆-轨道耦合动力学模型,仿真研究了钢轨打磨前后各项车辆动力学性能、曲线通过能力,给出了波长200~500 mm时打磨前后波深安全限值。结果表明:钢轨打磨很难彻底消除波长300 mm以上的波磨,但可以大幅降低轮轨力、轮轨蠕滑力、车体和侧架振动加速度等动力学指标;钢轨打磨后曲线上股轮轨接触形式由轨顶和轨侧两点接触变为贴合式接触,且上下股轮径差增大,车辆通过能力和安全性提升,钢轨磨耗指数显著降低,相较打磨前波深安全限值提升约0.2 mm。  相似文献   

13.
为了解决地铁小半径曲线钢轨非正常磨耗问题、延长曲线段钢轨使用寿命、保障列车运行的安全性和稳定性,通过实测分析小半径曲线钢轨型面数据的磨耗特点及其接触变化,设计出适用于小半径曲线轨道的钢轨打磨型面(Opt-60型面).建立地铁B型车动力学模型和轮轨接触有限元模型,分别对不同打磨型面在整个维护周期内的钢轨性能进行仿真计算.计算结果表明:相对于CN60打磨型面,Opt-60型面的打磨量减小了 44.2%,打磨深度减小了 0.646 mm;在维护周期内Opt-60型面的轮轨横向力和脱轨系数都有明显改善,安全系数有所提升,且横向平稳系数与垂向平稳性系数均得到提高;在一定列车通过量下,Opt-60型面的轮轨接触面积比CN60打磨型面的轮轨接触面积大14.63%~27.13%,接触应力减小19.27%~27.97%.计算结果已明显表明,Opt-60型面能有效减缓钢轨磨耗、抑制钢轨疲劳,还能提高列车运行的安全性和平稳性,优化了列车的动力学性能.  相似文献   

14.
王健 《铁道建筑》2022,(1):31-34
为提升车辆通过高速道岔时的运行平稳性,基于迹线法建立车轮与道岔钢轨接触几何计算模型,分析车辆通过道岔转辙器时的轮轨接触点对分布特性,发现轮轨接触位置不集中和突变是降低车辆运行平稳性的主要因素。以降低接触突变幅度为原则提出转辙器钢轨廓形打磨方案,并基于轮轨接触几何模型和车辆-道岔多刚体动力学模型,对道岔钢轨打磨的效果进行研究。结果表明:钢轨廓形打磨能有效降低道岔区轮轨接触不平顺和等效锥度,利于提升车辆的运行平稳性;打磨后轮轨横向力、车体横向加速度、脱轨系数的最大值分别降低了39.5%、7.4%、41.7%,该廓形打磨方案对提升道岔服役性能效果明显。  相似文献   

15.
提出多弧段钢轨廓形拟合方法:以圆弧半径以及圆弧相切点横坐标为设计变量,以轮轨接触点横向分布密度函数、轮轴横向力最小为目标函数,采用统计方法设定参数边界条件,建立非对称性钢轨廓形设计模型,并运用遗传算法对该模型进行求解,得到地铁曲线段外轨非对称性钢轨廓形.建立车辆系统动力学及轮轨接触力学模型,对设计的非对称钢轨廓形进行动力学性能评价以及磨耗分析.结果 表明,与采用TB60型面钢轨廓形相比,非对称性钢轨廓形基本不影响车辆动力学性能;同时,非对称性钢轨廓形改善了轮轨接触关系;钢轨顶面横坐标为0-25 mm区间内的轮轨接触斑分布密度为86.18%,非对称性廓形钢轨较TB60型面增加了35.21%;在通过车次分别为5.0×105次和1.0×106次的条件下,非对称性廓形钢轨的磨耗深度最大位置较TB60型面向轨顶中心移动5 mm,降低了钢轨的非正常磨耗.  相似文献   

16.
为解决动车组车辆在运行中出现的晃车及加速度异常情况,对磨耗后钢轨型面进行打磨,并通过仿真分析以及跟踪测量对打磨效果进行评估。分析结果表明,打磨后轮轨接触点对分布较打磨前更窄,分布于滚动圆附近,轮对发生横移时滚动圆半径变化较小,但由于其较小的接触面积导致接触应力较大,易产生较大的垂磨;打磨后钢轨匹配时由于等效锥度较小,对车辆运行稳定性及车体振动起到改善作用;打磨后钢轨的磨耗位置居中,磨耗面积小但垂直磨耗大,在运行一段时间后,轮轨接触光带会缓慢增大。因此,钢轨打磨缓解了车辆运行过程中构架横向加速度异常的情况,虽其滚动圆处垂磨较大,但其总磨耗量较打磨前小,且降低了对钢轨的损伤,有利于延长钢轨的寿命。  相似文献   

17.
为分析某运营期普速铁路160 km/h速度等级曲线区段的异常晃车问题,对晃车区段的轮轨廓形进行测量,分析了晃车区段的实测车体加速度与轨道几何不平顺数据的时频特征,进一步建立了车辆-有砟轨道耦合动力学仿真模型,采用试验研究和仿真计算相结合的方式研究了轮轨匹配特性和欠过超高状态对曲线区段车辆横向稳定性的影响。结果表明:异常晃车曲线区段车体横向加速度较大,存在明显周期性振动,车体横向加速度振动空间频率为0.024 m-1,对应波长为42 m;晃车曲线区段内外股钢轨廓形对称性差,外股钢轨轨顶面和轨距角处磨耗更严重,与实测车轮廓形匹配时轮轨接触点在轨顶面上更为集中;与采用LM&CHN60廓形相比,采用实测轮轨廓形通过曲线时的轮对横移量更大,轮对和转向架周期性振动更明显,周期性振动空间频率为0.024 m-1,与异常晃车频率相同;运行速度为60 km/h时的轮轴横向力显著增加,运行速度为160 km/h时的脱轨系数和轮重减载率显著增加;在曲线半径为5 000 m,超高为25 mm条件下,车辆以60 km/h和160 km/h的运行速度通过曲线时分...  相似文献   

18.
针对地铁线路普遍存在的钢轨磨耗现象,从轮轨蠕滑力和磨耗功率的角度研究地铁小半径曲线钢轨波磨问题,并利用多体动力学软件SIMPACK建立车辆-轨道动力学耦合模型对地铁曲线地段上车辆运行速度和曲线半径对轮轨磨耗的影响进行动力仿真计算和分析。分析计算结果表明:车辆运营速度不宜过低,为降低轮轨磨耗、保证行车安全及运力需求,最高运营速度定为60~70 km/h为宜;曲线半径对钢轨磨耗功率影响较大,在符合城市规划等决定因素的要求下地铁线路曲线半径尽量大于500 m,可以实现良好的运行效果。  相似文献   

19.
针对我国部分地铁线路出现振动噪声加剧及钢轨异常波磨的现实情况,开展地铁钢轨波磨形成机理的研究。利用多体动力学仿真软件Simpack建立包含地铁车辆和轨道结构的车辆系统动力学模型,研究车辆-轨道系统动力学性能以及弹性轨道系统振动特性对波磨形成的影响。研究结果表明:车辆通过曲线半径300m的钢弹簧浮置板轨道时,产生欠超高的速度以及降低曲线超高均可以降低轮轨间作用力;内侧钢轨的轮轨磨耗指数和横向蠕滑力均大于外侧,尤其在速度为55km/h时,无论轮缘是否贴靠钢轨,内侧钢轨所受应力均相对较大,造成内轨磨耗加剧;从曲线内外侧钢轨和轨道板频谱特性可知,内侧钢轨与轨道板发生共振现象所对应的频率140Hz与现场测试得出的通过频率139Hz相接近。轮轨间横向滑动造成的钢轨磨耗和轨道结构的垂向振动可能是造成曲线钢轨波磨的主要原因。  相似文献   

20.
在广深线部分大半径曲线区段和直线区段,钢轨内侧存在明显的侧磨,且动车组水平加速度频繁超限。通过对钢轨侧磨区段发生异常晃动车体的前后端、左右侧加速度进行测试,结合侧磨区段钢轨廓形的测量结果,可以判断出在该型动车组频繁水平加速度超限区段存在不良轮轨接触关系。采用SIMPACK动力学分析软件建立该型动车组单轮对、转向架、整车的动力学模型,分析了自由轮对仿真模型和弹性定位、完全刚性定位转向架仿真模型采用广深线打磨前后实测钢轨踏面时蛇行频率与车体固有频率的仿真结果。分析结果表明:当动车组以160 km/h左右速度运行在打磨前实测廓形区段时,转向架蛇行频率与车体横向固有频率相同,造成车体平稳性和舒适性严重恶化;钢轨廓形打磨以后,改善了轮轨匹配关系,车载仪超限数量、添乘仪报警个数、轨检指标较打磨前均得到明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号