首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为明确车辆在高速公路车道保持阶段行驶过程中的轨迹横向摆动行为特征,利用高速公路无人机航拍的车辆轨迹数据集,基于车辆位置坐标提取行驶轨迹和速度,计算车辆在自然驾驶状态下的轨迹摆动特征指标,包括轨迹横向摆动的幅度和在摆动周期内的纵向行驶距离,分析不同车型的速度分布特征,研究行驶速度和车道位置对车辆轨迹横向摆动指标的影响。结果表明,尽管小型车和大型车的车身尺寸和动力性能存在显著差别,但两者的轨迹摆动幅度在整体上基本相同,两种车型的摆动幅度平均值分别为0.587 m和0.560 m,摆动周期内的行驶距离分别为252.95 m和251.99 m;车辆轨迹的横向摆动幅度对速度变化不敏感,不会随速度增加而增大,在高速条件下趋于平稳甚至下降,同样,摆动周期内的行驶距离与行驶速度之间未见显著相关性;不同的车道位置对轨迹摆动行为有一定影响,对小型车而言,车道位置由内向外变化时,轨迹摆幅有一定的增加趋势,而大型车的轨迹摆幅则是中间车道最小;国内高速公路车辆轨迹摆幅略高于德国HighD数据集的分析结果,但整体上非常接近;根据车辆轨迹的横向摆动幅度特征,可以确定高速公路小客车专用车道(或是小客车专用高速公路)的...  相似文献   

2.
唐易  汤俊青  刘恒 《交通与运输》2021,34(z1):52-56,69
为了准确分析高速公路弯道路段对车辆行驶速度的影响,研究提出一种基于车辆GPS数据的车辆行驶速度变化特征分析方法.首先,汇聚夜间时段车辆在弯道路段的GPS数据,并对数据完成清洗预处理;其次,结合弯道路段的拓扑结构设计虚拟的检测断面,并将GPS数据聚合到检测断面,分析不同断面的车辆行驶速度变化特征;最后,将分析结果应用于微观交通仿真的参数标定中,验证该方案能够有效提升仿真模型的精度.研究结果已直接应用于深圳机荷高速公路改扩建工程微观交通仿真模型的参数标定,显著提高了仿真模型评估分析的可信度.  相似文献   

3.
将驾驶模拟器应用于交通仿真中.在具有不同道路线形组合的弯道上,对小客车进行了行驶试验.针对山区低等级公路小半径曲线的特点,分析了行车速度的变化趋势以及与行驶轨迹的关系.对于小半径曲线而言,车辆在进入曲线时速度降低,轨迹发生内向偏移;而车辆在驶出曲线时速度提高,轨迹发生外向偏移.进一步地考虑曲线路段车辆受力特征及驾驶人驾驶行为,分析了行车速度与行车轨迹侧向偏移的相关性,得到了基于车速的行车轨迹侧向偏移计算模型,计算结果可为山区公路线形设计提供参考依据.  相似文献   

4.
理想条件下路网临界速度的研究   总被引:1,自引:0,他引:1  
运用最优化和跟驰理论,确定了车辆稳定跟驰行驶速度与车辆在该状态下的车头间距和行驶时间等关系。建立了路网临界速度模型,同时应用该模型和利用先进的地理信息定位系统(车载GPS)在北京市路网上采集的基础数据,计算出北京市路网达到理想容量状态时的临界行驶速度。  相似文献   

5.
为了保证山区高速公路连续反向曲线路段的安全性、舒适性等服务性能,本文采用SIMPACK多体动力学仿真软件建立9质量6自由度的典型小汽车模型,通过模拟雅康高速公路典型连续反向曲线路段上汽车行驶的动力响应,筛选提取不同行驶速度下该路段各曲线半径的最大横向加速度并进行对比分析。数据结果表明:雅康高速公路以80 km/h为设计速度很科学合理,满足我国横向加速度舒适性合理取值要求;但在实际行驶中,道路及天气情况良好时,在曲线半径大于1 200 m并设置超高路段,最大行驶速度可放宽至100 km/h。  相似文献   

6.
采用虚拟道路行驶仿真方法,在具有不同路宽的弯道上,进行了小客车行驶试验,分析了通道宽度与不同的弯道半径、转角相组合时其变化对行驶轨迹和速度的影响.研究结果表明:当弯道转角在20°~50°时,通道变宽能使轨迹半径和速度明显地、近乎线性地增加,其中受影响最大的是转角为20°、半径低于200 m的弯道.当通道宽度从2 m增加...  相似文献   

7.
参考COPERTⅢ模型中的车辆分类方法,得到4种类型车辆在不同行驶速度下的CO、NOx、VOC排放量计算模型,结合路段流量以及车辆通过收费站的运动规律,计算收费站前后的排放数据,得到高速公路收费站尾气污染评价结果。并以京珠高速珠海收费站为例进行尾气污染评价分析,结果表明该评价方法具有一定的科学性和较强的操作性。  相似文献   

8.
针对轻型车行驶特征与能耗的关联性进行分析时直接进行大量实测数据比对会造成数据分析时间倍增及比对结果失真。机动车行驶工况是车辆实际道路行驶特征的集中体现,是分析机动车油耗及排放的重要手段。以私家车和出租车为轻型车研究对象,在采集了大量车辆的实际行驶数据的基础上采用短行程法为构建方法分别构建了私家车和出租车的行驶工况。最后对所构建的工况的有效性进行了验证,分别比对了所构建的私家车和出租车行驶工况和实际行驶工况的速度及加速度概率分布,结果显示了良好的一致性,表明了所构建的轻型车行驶工况在表征车辆实际道路行驶特征方面的有效性。  相似文献   

9.
结合城市干路中行人过街安全问题,针对行人过街警告标志设置的前置距离问题进行研究。首先对驾驶员驾驶过程中的视认特征进行分析,并将其划分为不同阶段,其次根据不同阶段驾驶行为特征建立各阶段车辆行驶距离模型,并考虑停车安全距离,最终构建行人过街警告标志前置距离解析模型。最后,根据人机工程学原理进行驾驶模拟试验,测定相关数据,并对模型中各参数值大小进行标定。经计算得到不同速度、不同车道数下的行人过街警告标志前置距离,并给出建议距离。结果表明,当速度一致时,随着车道数增加,行人过街警告标志前置距离不断增大;当车道数一致时,随着速度增加,标志前置距离增大。研究结果可为城市干路行人过街警告标志设置提供参考。  相似文献   

10.
通过大型通用有限元软件ANSYS,对某一钢管混凝土拱桥进行数值模拟,通过改变其结构的部分参数,分析计算移动荷载作用对钢管拱桥动力特性的影响。研究结果表明:移动荷载作用时对桥梁结构动力性能的影响存在一个临界速度问题,当移动速度达到临界车速时,桥梁结构的振动幅度达到最大。提出为控制桥梁结构在移动荷载作用下的振动幅度,必须对车辆的行驶速度进行合理限制,该分析结果可为此类桥移动荷载作用下动力性能研究提供参考。  相似文献   

11.
随着列车的提速,车体的动力学性能,特别是振动性能发生了很大的变化,低速不能激发的模态在高速情况下几乎全部被激发,并出现了二次振动,此外,高速动车客室装饰和布局也完全改变。原有的车体振动舒适度测试方法是以中低速振动参数为依据的,测试内容和测试方法不能体现或不能全面反映高速动车组的振动情况,论文针对高速列车的振动特性,对振动舒适度的测试方法和分析内容进行了详细的研究,通过实测数据,分析了同车厢中不同位置的车体加速度值的分布特点,分析了不同速度下的高速列车的加速度值的变化趋势,分析了明线和隧道工况下的振动舒适度值的变化,提出了高速列车振动舒适度的改进测试方案。  相似文献   

12.
为探究高速列车齿轮箱箱体振动特性和疲劳损伤, 应用小滚轮高频激励台架试验, 将滚轮表面加工成径跳量幅值为0.05 mm的13阶多边形, 可等效成20阶车轮多边形, 研究了某型齿轮箱箱体在不同垂向载荷与速度工况下的振动特性; 通过雨流计数法及Miner线性损伤法则, 分析了齿轮箱箱体单位时间应力累计损伤。研究结果表明: 受齿轮箱箱体共振影响, 不同垂向载荷与速度工况下, 高速列车运行速度为200 km·h-1时, 齿轮箱箱体各测点的垂、横向加速度均方根值均为最小; 当垂向载荷为23 t时, 大部分测点的垂、横向加速度均方根值均为最大; 齿轮箱箱体存在573 Hz的局部固有频率被激发共振, 其原因是试验速度为100 km·h-1时试验台发生共振, 以及试验速度为300 km·h-1时, 受到20阶多边形车轮转频约580 Hz的主频激扰; 车轮初始速度从0加速到200 km·h-1及从300 km·h-1减速至0的速度等级之间时, 齿轮箱箱体各测点的单位时间应力累计损伤波动较大, 其余速度等级段各测点的单位时间应力累计损伤波动很小; 单位时间应力损伤最大值出现在大齿轮箱齿面观察孔, 为3.72×10-10, 损伤最小值位于小齿轮箱轴承正上方, 仅为8.29×10-18。可见, 箱体共振、试验台减速运行、速度等级对齿轮箱箱体振动加速度影响较大; 非共振、试验台不减速运行、相同速度等级下, 垂向载荷对单位时间应力累计损伤影响甚微。   相似文献   

13.
根据拉格朗日原理,建立了基于人-车-路耦合振动的12自由度动力学数学模型;借助MATLAB/Simulink平台,分析车速、路面不平度、汽车前后轮迟滞性及左右轮相干性的特点;构建了随机路面激励时域模型;采用时域和频域分析了在不同路面及不同车速下汽车对儿童头部、臀部振动影响。研究表明:通过提高路面等级及车速可以提高儿童的乘坐舒适性;儿童对5~10 Hz的低频及15,23 Hz的中频振动最为敏感;适当地降低座椅刚度、提高阻尼及合理地布置座椅位置可以提高儿童的乘坐舒适性。  相似文献   

14.
根据结构动力学原理和有限元理论,建立了轮轨系统三维非线性有限元模型,用接触单元模拟轮轨实际的接触行为,计算了在不同行车速度下系统的振动特性沿轨道长度方向的变化规律.计算结果表明:系统的振动在距离轮轨接触中心点2.1m的范围内很快衰减,在2.1m之外其值变化很小;并且当速度达到350km·h-1时,系统的振动将会加剧,同时根据系统的振动情况和边界条件对计算结果的影响,建议钢轨计算长度取4.8~6m.  相似文献   

15.
为改善高速列车横风下运行的动力学性能, 提高运行平稳性和安全性, 以轮轴横向力和轮重减载率为优化目标, 对高速列车动力学模型的悬挂参数进行多目标优化设计; 建立高速列车多体动力学参数化模型, 依照大风限速标准, 加载列车在横风下以不同速度运行的气动力数据, 选取了止挡间隙、一系悬挂纵向和垂向刚度、二系悬挂纵向和垂向刚度、一系垂向减振器刚度、二系横向和垂向减振器刚度、抗蛇形减振器刚度及阻尼11个变量; 搭建高速列车动力学模型优化平台, 对高速列车多体动力学参数化模型的设计参数与轮轴横向力和轮重减载率的相关性进行分析, 得到列车各悬挂参数对轮轴横向力和轮重减载率的影响趋势; 基于相关性结果, 采用NCGA、AMGA和NSGA-Ⅱ遗传算法对高速列车的动力学参数进行优化设计。分析结果表明: 采用NSGA-Ⅱ算法的优化结果最为理想; 与轮轴横向力和轮重减载率相关性最大的参数为抗蛇形减振器刚度, 为反效应; 优化后列车的动力学性能得到明显的改善, 轮重减载率从原始的0.78整体优化到0.63以下, 且最小可以优化到0.49, 最高可降低37.2%;轮轴横向力从原始的16.8 kN整体优化到9.6 kN以下, 且最小可以优化到5.79 kN, 最高可降低65.5%;得到了优化目标的Pareto前沿最优解, 确定了列车各动力学参数设计变量的最优解集, 并对最优解集在其他列车速度和风速组合下的运行工况进行验证, 适用性较好。   相似文献   

16.
车辆系统空气弹簧失气安全性分析   总被引:1,自引:0,他引:1  
建立了具有刚度衰变特性的空气弹簧失气模型和非线性粘滑接触模型,结合车辆系统动力学,模拟空气弹簧失气动态过程与失气后的应急状态,分析了空气弹簧失气后车辆系统的稳定性与空气弹簧突然失气对车辆动力学性能的影响,研究了不同失气过程时长、运行速度与曲线通过工况下空气弹簧失气车辆的安全性。计算结果表明:空气弹簧失气后车辆临界速度由623km.h-1大幅降低为351km.h-1。空气弹簧突然失气导致轮轨垂向力减小,轮重减载率增大,且失气过程越短,轮重减载率越大,失气过程为0.2s时轮重减载率达到0.651。车辆运行速度低于300km.h-1时,车速对轮重减载率和轮轨力影响不明显,当大于300km.h-1时,减载率随车速增大迅速增大。车辆通过曲线时,在圆曲线上失气最危险,轮重减载率最大为0.652。  相似文献   

17.
斗轮堆取料机斗轮机构的设计主要参考《斗轮挖掘机设计规范》,设计结果偏于保守,为拓展该领域研究,应用离散元法及相应分析软件EDEM对不同斗轮转速下斗轮机构取料过程(包含挖料、提升和卸料)进行仿真,对比分析仿真结果与理论计算结果后得出:挖掘阻力与斗轮转速有关,随转速增大,挖掘阻力相应增大,且在重力式卸料转速范围内,卸料区间整体左移并越发分散,5r/min时卸料效果最好.  相似文献   

18.
为探明城市轨道交通高架钢轨波磨地段振动噪声对沿线环境的影响,以某城市轨道交通高架钢轨波磨地段为研究对象,开展了列车以不同速度通过时的振动与噪声现场测试;基于测试结果分析了车速对城市轨道交通高架振动与噪声的影响,研究了城市轨道交通高架噪声的空间分布特性,解释了城市轨道交通高架钢轨波磨地段振动与噪声峰值产生的原因。研究结果表明:当列车分别以20、40、60、80、100和110 km·h-1的速度通过城市轨道交通高架钢轨波磨地段时,距线路中心线7.5 m、高于轨面1.2 m处的声压时程峰值分别约为0.6、0.9、1.3、1.9、2.3和3.3 Pa;轨面以上区域主要受轮轨噪声的影响,而梁体下方区域则主要受桥梁结构噪声的影响;轮轨噪声与车速之间存在着很强的线性相关性,而桥梁结构噪声与车速之间的线性相关性则略低,车速每增大10 km·h-1,轮轨噪声和桥梁结构噪声分别约增大1.7和1.1 dB;不同车速下城市轨道交通高架噪声随距离的衰减规律基本一致,测点与线路中心线的距离每增大1倍,测得的噪声约减小4.33 dB;钢轨波磨对城市轨道交通高架轮轨噪声的影响较为显著,钢轨波磨的波长决定了列车以不同速度过桥时钢轨振动加速度的峰值频率,进而影响轮轨噪声的峰值频率;城市轨道交通高架结构噪声的峰值频率主要与其自身的振动特性有关,与车速和钢轨波磨的关系并不大。   相似文献   

19.
高颖 《交通标准化》2011,(12):132-134
通过选取山区某三级公路的某一路段为研究对象,该路段内含有不同半径大小的平曲线。采用动态GPS仪,现场测试车辆行驶的动态速度,并与路段内各种平曲线半径相对照,收集不同半径曲线段的线形资料及速度数据。通过对数据的分析整理,获得该三级公路平曲线半径与行车速度的回归模型,并利用运行速度理论分析该路段平曲线设计指标使用的恰当性和平曲线上实际行车状态的安全性。  相似文献   

20.
为研究路面条件对行车安全的影响,作者利用多体动力学仿真软件ADAMS/Car与ADAMS/Solve建立了车辆模型、道路模型、驾驶员模型以及^一车一路的耦合模型,并通过改变路面摩擦系数,分别模拟了晴天、雨天、雪天和在结冰状况下的路面条件,并进行了闭环仿真试验,得到了车辆的侧向位移、At向角以及轮胎的侧向反力的响应输出,分析了不同路面条件对行车安全的影响。计算结果表明:随着路面条件的恶化,驾驶员操纵方向盘的转动角速度突变增加;当结冰路面摩擦系数为0.18时,左右后轮侧向力均趋于0,会导致车辆绕前轮旋转,甚至失去控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号