首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In transport economics, modeling modal choice is a fundamental key for policy makers trying to improve the sustainability of transportation systems. However, existing empirical literature has focused on short-distance travel within urban systems. This paper contributes to the limited number of investigations on mode choice in medium- and long-distance travel. The main objective of this research is to study the impacts of socio-demographic and economic variables, land-use features and trip attributes on long-distance travel mode choice. Using data from 2007 Spanish National Mobility Survey we apply a multilevel multinomial logit model that accounts for the potential problem of spatial heterogeneity in order to explain long-distance travel mode choice. This approach permits us to compute how the probability of choosing among private car, bus and train varies depending on the traveler spatial location at regional level. Results indicate that travelers characteristics, trip features, cost of usage of transport modes and geographical variables have significant impacts on long-distance mode choice.  相似文献   

2.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

3.
The modeling of travel decision making has been a popular topic in transportation planning. Previous studies focused on random-utility discrete choice models and machine learning methods. This paper proposes a new modeling approach that utilizes a mixed Bayesian network (BN) for travel decision inference. The authors use a predetermined BN structure and calculate priori and posterior probability distributions of the decision alternatives based on the observed explanatory variables. As a “utility-free” decision inference method, the BN model releases the linear structure in the utility function but assumes the traffic level of service variables follow multivariate Gaussian distribution conditional on the choice variable. A real-world case study is conducted by using the regional travel survey data for a two-dimensional decision modeling of both departure time choice and travel mode choice. The results indicate that a two-dimensional mixed BN provides better accuracy than decision tree models and nested logit models. In addition, one can derive continuous elasticity with respect to each continuous explanatory variable for sensitivity analysis. This new approach addresses a research gap in probabilistic travel decision making modeling as well as two-dimensional travel decision modeling.  相似文献   

4.
Paleti  Rajesh  Balan  Lacramioara 《Transportation》2019,46(4):1467-1485

Travel surveys that elicit responses to questions regarding daily activity and travel choices form the basis for most of the transportation planning and policy analysis. The response variables collected in these surveys are prone to errors leading to mismeasurement or misclassification. Standard modeling methods that ignore these errors while modeling travel choices can lead to biased parameter estimates. In this study, methods available in the econometrics literature were used to quantify and assess the impact of misclassification errors in auto ownership choice data. The results uncovered significant misclassification rates ranging from 1 to 40% for different auto ownership alternatives. Also, the results from latent class models provide evidence for variation in misclassification probabilities across different population segments. Models that ignore misclassification were not only found to have lower statistical fit but also significantly different elasticity effects for choice alternatives with high misclassification probabilities. The methods developed in this study can be extended to analyze misclassification in several response variables (e.g., mode choice, activity purpose, trip/tour frequency, and mileage) that constitute the core of advanced travel demand models including tour and activity-based models.

  相似文献   

5.
Identification of the socioeconomic factors which affect the demand for buses, and the analysis of the use of the other transport modes by bus users are the two main objectives of this article. Work and school trips are highlighted as being very important trip purposes in Lagos metropolis by the multiple discriminant analysis model. It identifies mode of transport, distance, travel time, reliability, and the number of stops as significant mode choice variables. Multiple linear regression models for work and school trips identify mode of transport, transfort fare, travel time, annual income, and crew behaviour as significant variables in the choice of transport mode. These findings support the two alternative hypotheses of the study that the choice of bus is related to the individual perception of the quality of service of the different modes and that socioeconomic characteristics of the riders influence the patronage of buses. The attention of policy makers for the 22 transport corporations that operate inter-and intra-urban services in all the 21 states and the federal capital of Abuja in Nigeria is drawn to the importance of these variables for decisions.  相似文献   

6.
This study explores two nonparametric machine learning methods, namely support vector regression (SVR) and artificial neural networks (ANN), for understanding and predicting high-speed rail (HSR) travelers’ choices of ticket purchase timings, train types, and travel classes, using ticket sales data. In the train choice literature, discrete choice analysis is the predominant approach and many variants of logit models have been developed. Alternatively, emerging travel choice studies adopt non-utility-based methods, especially nonparametric machine learning methods including SVR and ANN, because (1) those methods do not rely on assumptions on the relations between choices and explanatory variables or any prior knowledge of the underlying relations; (2) they have superb capabilities of iteratively identifying patterns and extracting rules from data. This paper thus contributes to the HSR train choice literature by applying and comparing SVR and ANN with a real-world case study of the Shanghai-Beijing HSR market in China. A new normalized metric capturing both the load factor and the booking lead time is proposed as the target variable and several train service attributes, such as day of week, departure time, travel time, fare, are identified as input variables. Computational results demonstrate that both SVR and ANN can predict the train choice behavior with high accuracy, outperforming the linear regression approach. Potential applications of this study, such as rail pricing reform, have also been identified.  相似文献   

7.
The estimation of discrete choice models requires measuring the attributes describing the alternatives within each individual’s choice set. Even though some attributes are intrinsically stochastic (e.g. travel times) or are subject to non-negligible measurement errors (e.g. waiting times), they are usually assumed fixed and deterministic. Indeed, even an accurate measurement can be biased as it might differ from the original (experienced) value perceived by the individual.Experimental evidence suggests that discrepancies between the values measured by the modeller and experienced by the individuals can lead to incorrect parameter estimates. On the other hand, there is an important trade-off between data quality and collection costs. This paper explores the inclusion of stochastic variables in discrete choice models through an econometric analysis that allows identifying the most suitable specifications. Various model specifications were experimentally tested using synthetic data; comparisons included tests for unbiased parameter estimation and computation of marginal rates of substitution. Model specifications were also tested using a real case databank featuring two travel time measurements, associated with different levels of accuracy.Results show that in most cases an error components model can effectively deal with stochastic variables. A random coefficients model can only effectively deal with stochastic variables when their randomness is directly proportional to the value of the attribute. Another interesting result is the presence of confounding effects that are very difficult, if not impossible, to isolate when more flexible models are used to capture stochastic variations. Due the presence of confounding effects when estimating flexible models, the estimated parameters should be carefully analysed to avoid misinterpretations. Also, as in previous misspecification tests reported in the literature, the Multinomial Logit model proves to be quite robust for estimating marginal rates of substitution, especially when models are estimated with large samples.  相似文献   

8.
Hafezi  Mohammad Hesam  Liu  Lei  Millward  Hugh 《Transportation》2019,46(4):1369-1394

This study develops a new comprehensive pattern recognition modeling framework that leverages activity data to derive clusters of homogeneous daily activity patterns, for use in activity-based travel demand modeling. The pattern recognition model is applied to time use data from the large Halifax STAR household travel diary survey. Several machine learning techniques not previously employed in travel behavior analysis are used within the pattern recognition modeling framework. Pattern complexity of activity sequences in the dataset was recognized using the FCM algorithm, and resulted in identification of twelve unique clusters of homogeneous daily activity patterns. We then analysed inter-dependencies in each identified cluster and characterized the cluster memberships through their socio-demographic attributes using the CART classifier. Based on the socio-demographic characteristics of individuals we were able to correctly identify which cluster individuals belonged to, and also predict various information related to their activities, such as start time, duration, travel distance, and travel mode, for use in activity-based travel demand modeling. To execute the pattern recognition model, the 24-h activity patterns are split into 288 three dimensional 5 min intervals. Each interval includes information on activity types, duration, start time, location, and travel mode if applicable. Results from aggregated statistical evaluation and Kolmogorov–Smirnov tests indicate that there is heterogeneous diversity among identified clusters in terms of temporal distribution, and substantial differences in a variety of socio-demographic variables. The homogeneous clusters identified in this study may be used to more accurately predict the scheduling behavior of specific population groups in activity-based modeling, and hence to improve prediction of the times and locations of their travel demands. Finally, the results of this study are expected to be implemented within the activity-based travel demand model, Scheduler for Activities, Locations, and Travel (SALT).

  相似文献   

9.
10.
Multi-dimensional discrete choice problems are usually estimated by assuming a single-choice hierarchical order for the entire study population or for pre-defined segments representing the behavior of an “average” person and by indicating either limited differences or a variety in choices among the study population. This study develops an integral methodological framework, termed the flexible model structure (FMS), which enhances the application of the discrete choice model by developing an optimization algorithm that segment given data and searches for the best model structure for each segment simultaneously. The approach is demonstrated here through three models that conceptualize the multi-dimensional discrete choice problem. The first two are Nested Logit models with a two-choice dimension of destination and mode; they represent the estimation of a fixed-structure model using pre-segmented data as is mostly common in multi-dimensional discrete choice model implementation. The third model, the FMS, includes a fuzzy segmentation method with weighted variables, as well as a combination of more than one model structure estimated simultaneously. The FMS model significantly improves estimation results, using fewer variables than do segmented NL models, thus supporting the hypothesis that different model structures may best describe the behavior of different groups of people in multi-dimensional choice models. The implementation of FMS involves presenting the travel behavior of an individual as a mix of travel behaviors represented by a number of segments. The choice model for each segment comprises a combination of different choice model structures. The FMS model thus breaks the consensus that an individual belongs to only one segment and that a segment can take only one structure.  相似文献   

11.
The logit modeling methodology is applied to include transit access mode choices in conjunction with the automobile vs. transit travel choice decision. The practical problems that arise when the choice set expands beyond two alternatives are identified and addressed. In particular, the complexities that must be resolved in order to use ULOGIT or a similar program include the definition of independent choices (the Independence of Irrelevant Alternatives Property (IIA)), a sequential binary or multinomial logit model (MNL) structure, specification and testing of variables, and the potential for transferring the model to new areas for transportation planning purposes. It was found that the available options cannot be reduced to a single modeling strategy. However, the analysis showed certain concepts which can reduce the uncertainties in related applications of the logit model. It was determined that as many independent choices as possible should be hypothesized and tested for inclusion in the model, but the IIA must be carefully considered because it limits the number of choices that can be represented. Although binary calibration techniques are conceptually appealing, the large number of calibrations for studies involving more than three alternatives suggests that the MNL approach is most practical. Application of the MNL model requires that not only must variables be selected that best explain choice, but they must also be placed in the disutility function of the specific mode or modes to which they are most unique. Finally, it was shown that if choice sets and homogeneous market segments are properly defined, the models can be transferred among different urban areas even though the urban areas exhibit different aggregate characteristics. All observations lead to the general conclusion that the logit modeling methodology can now best be advanced with implementation experience.  相似文献   

12.
This paper investigates empirical relationships between trip chain type and mode class choice for developing countries. To formulate these two sets of decisions, four empirical models are developed using structural equation modeling (SEM). Those models are calibrated using one-month travel diary data collected in Dhaka city. SEM correlates the observed variables and identifies their relationship with trip-chaining type utility and mode class choice utility. The fitted models are selected based on statistical results and similarity with the real-life situation. Direct relationships between trip-chaining and mode choice utilities are found insignificant. However, several socio-demographic factors influence both simultaneously. Consequently, it is essential to consider mode class choice concurrently for modeling trip chains. This study also investigates the influencing factors for work-based and non-work-based trip chains separately and effects of road users’ heterogeneity. The research results can be utilized to perceive trip chain-mode choice patterns for developing countries.  相似文献   

13.
This paper presents a system of hierarchical rule-based models of trip generation and modal split. Travel attributes, like trip counts for different transportation modes and commute distance, are among the modeled variables. The proposed framework could be considered as an alternative for several modules of the traditional travel demand modeling approach, while providing travel attributes at the highly disaggregate level that can be also used in activity-based micro-simulation modeling systems. Nonetheless, the modeling framework of this study is not considered as a substitute for activity-based models. The explanatory variables set ranges from socio-economic and demographic attributes of the household to the built environment characteristics of the household residential location. Another important contribution of the study is a framework in which travel attributes are modeled in conjunction with each other and the interdependencies among them are postulated through a hierarchical system of models. All the models are developed using rule-based decision tree method. Moreover, the models developed in this study present a useful improvement in increasing the practicality and accuracy of the rule-based travel data simulation models.  相似文献   

14.
ABSTRACT

This paper reviews the activity-travel behaviour literature that employs Machine Learning (ML) techniques for empirical analysis and modelling. Machine Learning algorithms, which attempt to build intelligence utilizing the availability of large amounts of data, have emerged as powerful tools in the fields of pattern recognition and big data analysis. These techniques have been applied in activity-travel behaviour studies since the early ’90s when Artificial Neural Networks (ANN) were employed to model mode choice decisions. AMOS, an activity-based modelling system developed in the mid-’90s, has ANN at its core to model and predict individual responses to travel demand management measures. In the dawn of 2000, ALBATROSS, a comprehensive activity-based travel demand modelling system, was proposed by Arentze and Timmermans using Decision Trees. Since then researchers have been exploring ML techniques like Support Vector Machines (SVM), Decision Trees (DT), Neural Networks (NN), Bayes Classifiers, and more recently, Ensemble Learners to model and predict activity-travel behaviour. A large number of publications over the years and an upward trend in the number of published articles over time indicate that Machine Learning is a promising tool for activity-travel behaviour analysis and prediction. This article, first of its kind in the literature, reviews these studies and explores the trends in activity-travel behaviour research that apply ML techniques. The review finds that mode choice decisions have received wide attention in the literature on ML applications. It was observed that most of the studies identify the lack of interpretability as a serious shortcoming in ML techniques. However, very few studies have attempted to improve the interpretability of the models. Further, some studies report the importance of feature engineering in ML-based studies, but very few studies adopt feature engineering before model development. Spatiotemporal transferability of models is another issue that has received minimal attention in the literature. In the end, the paper discusses possible directions for future research in the area of activity-travel behaviour modelling using ML techniques.  相似文献   

15.

The choice behaviour of low cost travel (LCT) modes is very sensitive to travel distance. A line haul system designed on the basis of current planning practice of locating widely spaced stations to cater auto and bus feeder modes with the primary objective of gaining travel speed is hostile to non‐motorized and low cost feeder modes. With the revival of interest in promoting the use of walk'n ride and bike'n ride modes, there is a need to develop an appropriate tool to examine the effect of their specific characteristics in establishing the number and location of stations.

A generic normative behavioural hybrid model for locating the cost minimizing number and location of stations is developed for an LCT‐fed line haul system. The model considers the system with many to many two dimensional line haul demand density function in which the density varies in both x‐ and y‐directions. The feeder mode choice behaviour is incorporated in the model by integrating probability‐access/egress distance function with the objective function. Explicit functional relationships among the parameters of these feeder modes such as modal share as a function of access/egress distance with the parameters of line haul systems are developed. Dynamic programming is used to minimize the system cost. The generic model is shown to collapse into several simplified models capable of yielding approximate solutions for several well known special cases. It has been shown that location of stations is sensitive to the through load on board as well as users’ cost that defines the choice behaviour at large. Numerical examples are presented to demonstrate the applicability of the model.  相似文献   

16.
A note on the consistent aggregation of nested logit demand functions   总被引:1,自引:0,他引:1  
The present paper derives a set of rules allowing for the consistent aggregation of nested logit travel demand functions across origin and destination zones. Presented aggregation rules are derived for the case when the mode choice is performed conditional on destination choice. The derivation is based on the principles of consistency between aggregate and disaggregate travel demand models introduced by Sweet as well as upon the sampling theory.  相似文献   

17.
In mode choice decision, travelers consider not only travel time but also reliability of its modes. In this paper, reliability was expressed in terms of standard deviation and maximum delay that were measured based on triangular distribution. In order to estimate value of time and value of reliability, the Multinomial and Nested Logit models were used. The analysis results revealed that reliability is an important factor affecting mode choice decisions. Elasticity is used to estimate the impacts of the different policies and system improvements for water transportation mode. Among these policies, decision maker can assess and select the best alternative by doing the benefit and cost analysis based on a new market share, the value of time, and the value of reliability. Finally, a set of promising policies and system improvement of the water transportation were proposed.  相似文献   

18.
This paper presents an investigation of the temporal evolution of commuting mode choice preference structures. It contributes to two specific modelling issues: latent modal captivity and working with multiple repeated crossectional datasets. In this paper latent modal captivity refers to captive reliance on a specific mode rather than all feasible modes. Three household travel survey datasets collected in the Greater Toronto and Hamilton Area (GTHA) over a ten-year time period are used for empirical modelling. Datasets collected in different years are pooled and separate year-specific scale parameters and coefficients of key variables are estimated for different years. The empirical model clearly explains that there have been significant changes in latent modal captivity and the mode choice preference structures for commuting in the GTHA. Changes have occurred in the unexplained component of latent captivities, in transportation cost perceptions, and in the scales of commuting mode choice preferences. The empirical model also demonstrates that pooling multiple repeated cross-sectional datasets is an efficient way of capturing behavioural changes over time. Application of the proposed mode choice model for practical policy analysis and forecasting will ensure accurate forecasting and an enhanced understanding of policy impacts.  相似文献   

19.
Assessing the impact of characteristics of the built environment on travel behavior can yield valuable tools for land use and transportation planning. Of particular interest are planning models that can estimate the effects of ‘smart growth’ planning. In this paper, a post-processor method of quantifying and searching for relationships among many aspects of travel behavior and the built environment is developed and applied to the Buffalo, NY area. A wide scope of travel behavior is examined, and over 50 variables, many of which are based on high-detail data sources, are examined for potentially quantifying the built environment. Linear modeling is then used to relate travel behavior and the built environment, and the resulting models may be applied in a post-processor fashion to travel models to provide some measure of sensitivity to built environment modifications. The study’s findings demonstrate that mode choice is highly correlated to measures of the built environment, and that many of the principles of smart growth appear to be a valid way to encourage non-vehicle travel. Home-based VHT and VMT appear to be affected by the built environment to a lesser degree.  相似文献   

20.
Three of the most highly regarded disaggregate mode split models incorporate very different estimates of the responsiveness, or elasticity, of mode choice to changes in auto travel times and costs. These differences appear to be due in part to the varying specifications used by the model, and particularly whether certain variables (such as a dummy variable for CBD destinations or automobile ownership) are included in addition to the more traditional variables (such as travel time, cost, and household income). More research is needed on the implications of the theory of traveler choices for model specification and the effect of alternative, but theoretically justifiable, specifications on elasticity estimates. Until this research reduces our uncertainty about the elasticity of demand, analysts evaluating transportation policies should assess the sensitivity of their results to the range of plausible elasticities or models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号