首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐quantifiable factors (e.g. perceived, attitudinal and preferential factors) have not been investigated fully in past transportation studies, which has raised questions on the predictive capabilities of the models. In this study, Structure Integration Models, with one of their sub‐models, Measurement Equation, are combined with latent variables, which are integrated with another sub‐model, Structural Equation. The estimated latent variables are used as explanatory variables in decision models. As a result, the explanatory and predictive capabilities of the models are enhanced. The models can then be used to describe the various behaviors of travelers of different types of transportation systems in a more accurate way. In this study, the Structure Integration Model was applied to study the impacts of real‐time traffic information on the route‐switching behavior of road users on the Sun Yat‐Sen expressway, Taiwan. At present, the real‐time traffic information provided on this expressway includes radio traffic reports and changeable message signs. The results of this study can facilitate the provision of traffic information on highways.  相似文献   

2.

An important decision faced by airline schedulers is how to adapt the flight schedule and aircraft assignment to unforeseen perturbations in an established schedule. In the face of unforeseen aircraft delays, schedulers have to decide which flights to delay, and when delays become excessive, which to cancel. Current scheduling models deal with simple decision problems of delay or cancellation, but not with both simultaneously. But in practice the optimal decision may involve results from the integration of both flight cancellations and delays. In Part I of this paper, a quadratic programming model for the integration decision problem is given. The model can formulate the integration of flight cancellations and delays as well as some special cases, such as the ferrying of surplus aircraft and the possibility of swapping different types of aircraft. In this paper, based on the special structure of the model, an effective algorithm is presented, sufficient computational experiments are conducted and some results are reported. These show that we can expect to obtain a sufficiently good solution in terms of reasonable CPU time.  相似文献   

3.
In this paper, a case study is carried out in Hong Kong for demonstration of the Transport Information System (TIS) prototype. A traffic flow simulator (TFS) is presented to forecast the short‐term travel times that can be served as a predicted travel time database for the TIS in Hong Kong. In the TFS, a stochastic deviation coefficient is incorporated to simulate the minute‐by‐minute fluctuation of traffic flows within the peak hour period. The purposes of the case study are: 1) to show the applicability of the TFS for larger‐scale road network; and 2) to illustrate the short‐term forecasting of path travel times in practice. The results of the case study show that the TFS can be applied to real network effectively. The predicted travel times are compared with the observed travel times on the selected paths for an OD pair. The results show that the observed path travel times fall in the 90% confidence interval of the predicted path travel times.  相似文献   

4.
    
This paper introduces a linear holding strategy based on prior works on cruise speed reduction, aimed at performing airborne delay at no extra fuel cost, as a complementary strategy to current ground and airborne holding strategies. Firstly, the equivalent speed concept is extended to climb and descent phases through an analysis of fuel consumption and speed from aircraft performance data. This gives an insight of the feasibility to implement the concept, differentiating the case where the cruise flight level initially requested is kept and the case where it can be changed before departure in order to maximize the linear holding time. Illustrative examples are given, where typical flights are simulated using an optimal trajectory generation tool where linear holding is maximized while keeping constant the initially planned fuel. Finally, the effects of linear holding are thoroughly assessed in terms of the vertical trajectory profiles, range of feasible speed intervals and trade-offs between fuel and time. Results show that the airborne delay increases significantly with nearly 3-fold time for short-haul flights and 2-fold for mid-hauls to the cases in prior works.  相似文献   

5.
This paper presents the design and evaluation process of a self-learning system for local ramp metering control. This system is developed on the basis of reinforcement learning (RL) and can deal with the problem of on-ramp queue management through a continuous learning process. A general framework of the system design including the definition of RL elements and an algorithm that can accomplish the learning process is proposed. Simulation tests are carried out to evaluate the performance of the new system. In terms of the total time spent by road users, the new system can achieve a 30% reduction from the situation of no control, a result which is competitive with the widely accepted algorithm ALINEA. Meanwhile, simulation results show that the new system can keep on-ramp queues strictly under a series of pre-specified constraints, which proves its capability of managing on-ramp queues.  相似文献   

6.
    
This article proposes to develop a prediction model for traffic flow using kernel learning methods such as support vector machine (SVM) and multiple kernel learning (MKL). Traffic flow prediction is a dynamic problem owing to its complex nature of multicriteria and nonlinearity. Influential factors of traffic flow were firstly investigated; five‐point scale and entropy methods were employed to transfer the qualitative factors into quantitative ones and rank these factors, respectively. Then, SVM and MKL‐based prediction models were developed, with the influential factors and the traffic flow as the input and output variables. The prediction capability of MKL was compared with SVM through a case study. It is proved that both the SVM and MKL perform well in prediction with regard to the accuracy rate and efficiency, and MKL is more preferable with a higher accuracy rate when under proper parameters setting. Therefore, MKL can enhance the decision‐making of traffic flow prediction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Complexity of car park activity is reproduced from a concurrent execution of behaviour of various drivers. This paper presents a step in the development of a multimodal traffic simulator based on multi‐agent paradigm and designed as a decision aid tool as well as a video game. The user‐player has the opportunity to test different scenarios. We propose an approach for designing the decision‐making rules and the learning mechanism for a car driver agent. For that, a panel of methods such as stated preference modelling, Design Of Experiments and data fusion is used. Initial behavioural models, based on similar preferences, are developed for specified categories. Each agent will adapt its behaviour after executing its learning process. Our approach can be used in order to optimize needs of road network users and those of people in charge of traffic regulation. A demonstrator has been developed to test parking policies in an urban area as well as changes of car park characteristics.  相似文献   

9.
This paper reports our experiences with agent-based architectures for intelligent traffic management systems. We describe and compare integrated TRYS and TRYS autonomous agents, two multiagent systems that perform decision support for real-time traffic management in the urban motorway network around Barcelona. Both systems draw upon traffic management agents that use similar knowledge-based reasoning techniques in order to deal with local traffic problems. Still, the former achieves agent coordination based on a traditional centralized mechanism, while in the latter coordination emerges upon the lateral interaction of autonomous traffic management agents. We evaluate the potentials and drawbacks of both multiagent architectures for the domain, and develop some conclusions respecting the general applicability of multiagent architectures for intelligent traffic management.  相似文献   

10.
    
This article describes a methodology for selecting days that are comparable in terms of the conditions faced during air traffic flow management initiative planning. This methodology includes the use of specific data sources, specific features of calendar days defined using these data sources, and the application of a specific form of classification and then cluster analysis. The application of this methodology will produce results that enable historical analysis of the use of initiatives and evaluation of the relative success of different courses of action. Several challenges are overcome here including the need to identify the appropriate machine learning algorithms to apply, to quantify the differences between calendar days, to select features describing days, to obtain appropriate raw data, and to evaluate results in a meaningful way. These challenges are overcome via a review of relevant literature, the identification and trial of several useful models and data sets, and careful application of methods. For example, the cluster analysis that ultimately selects sets of similar days uses a distance metric based on variable importance measures from a separate classification model of observed initiatives. The methodology defined here is applied to the New York area, although it could be applied by other researchers to other areas.  相似文献   

11.
    
Three decades of research studies in ground delay program (GDP) decision-making, and air traffic flow management in general, have produced several analytical models and decision support tools to design GDPs with minimum delay costs. Most of these models are centralized, i.e., the central authority almost completely decides the GDP design by optimizing certain centralized objectives. In this paper, we assess the benefits of an airline-driven decentralized approach for designing GDPs. The motivation for an airline-driven approach is the ability to incorporate the inherent differences between airlines when prioritizing, and responding to, different GDP designs. Such differences arise from the airlines’ diverse business objectives and operational characteristics. We develop an integrated platform for simulating flight operations during GDPs, an airline recovery module for mimicking the recovery actions of each individual airline under a GDP, and an algorithm for fast solution of the recovery problems to optimality. While some of the individual analytical components of our framework, model and algorithm share certain similarities with those used by previous researchers, to the best of our knowledge, this paper presents the first comprehensive platform for simulating and optimizing airline operations under a GDP and is the most important technological contribution of this paper. Using this framework, we conduct detailed computational experiments based on actual schedule data at three of the busiest airports in the United States. We choose the recently developed Majority Judgment voting and grading method as our airline-driven decentralized approach for GDP design because of the superior theoretical and practical benefits afforded by this approach as shown by multiple recent studies. The results of our evaluation suggest that adopting this airline-driven approach in designing the GDPs consistently and significantly reduces airport-wide delay costs compared to the state-of-the-research centralized approaches. Moreover, the cost reduction benefits of the resultant airline-driven GDP designs are equitably distributed across different airlines.  相似文献   

12.
    
Abstract

This paper presents an algorithm for assigning flight departure delays under probabilistic airport capacity. The algorithm dynamically adapts to weather forecasts by revising, if necessary, departure delays. The proposed algorithm leverages state-of-the-art optimization techniques that have appeared in recent literature. As a case study, the algorithm is applied to assigning departure delays to flights scheduled to arrive at San Francisco International Airport in the presence of uncertainty in the fog clearance time. The cumulative distribution function of fog clearance time was estimated from historical data. Using daily weather forecasts to update the probabilities of fog clearance times resulted in improvement of the algorithm's performance. Experimental results also indicate that if the proposed algorithm is applied to assign ground delays to flights inbound at San Francisco International airport, overall delays could be reduced up to 25% compared to current level.  相似文献   

13.

This paper deals with route structures in air transportation in general and describes the derivation of such structures. Based on an extensive analysis of scheduled air traffic in Germany, an overview of the situation in domestic and international air travel is given. In particular, relationships were found which permit—in connection with a number of influencing factors—to derive from the present situation route structures, which are also valid for a future year.

This approach was used for the assignment of origin‐destination‐passenger flows to air network routes in a forecast of demand and services in commercial air transportation of the Federal Republic of Germany for the year 1995.  相似文献   

14.
    
Solving the multi‐objective network design problem (MONDP) resorts to a Pareto optimal set. This set can provide additional information like trade‐offs between objectives for the decision making process, which is not available if the compensation principle would be chosen in advance. However, the Pareto optimal set of solutions can become large, especially if the objectives are mainly opposed. As a consequence, the Pareto optimal set may become difficult to analyze and to comprehend. In this case, pruning and ranking becomes attractive to reduce the Pareto optimal set and to rank the solutions to assist the decision maker. Because the method used, may influence the eventual decisions taken, it is important to choose a method that corresponds best with the underlying decision process and is in accordance with the qualities of the data used. We provided a review of some methods to prune and rank the Pareto optimal set to illustrate the advantages and disadvantages of these methods. The methods are applied using the outcome of solving the dynamic MONDP in which minimizing externalities of traffic are the objectives, and dynamic traffic management measures are the decision variables. For this, we solved the dynamic MONDP for a realistic network of the city Almelo in the Netherlands using the non‐dominated sorting genetic algorithm II. For ranking, we propose to use a fuzzy outranking method that can take uncertainties regarding the data quality and the perception of decision makers into account; and for pruning, a method that explicitly reckons with significant trade‐offs has been identified as the more suitable method to assist the decision making process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
选取环境空气中PM2.5、PM10、CO、NO2、O3污染物及空气质量指数(AQI)分析乌鲁木齐市疫情期间交通流量对空气质量的影响。结果表明,在乌鲁木齐市两次疫情交通管制期间,交通流量显著降低,环境空气中PM2.5、PM10、CO、NO2、O3污染物浓度及AQI随之降低,尤其是PM10、CO和NO2浓度下降较为显著。自乌鲁木齐市解除交通管制,车辆恢复正常通行后,PM10、CO及NO2浓度逐渐增加甚至反超同期。鉴于PM、CO及NO2是汽车尾气的主要污染物,因此可推测交通流量增加或降低,环境空气质量也会随之发生变化,尤其是空气中PM10、CO及NO2污染物浓度呈正相关变化。  相似文献   

16.
    
To increase our understanding of the operations of traffic system, a visco‐elastic traffic model was proposed in analogy of non‐Newtonian fluid mechanics. The traffic model is based on mass and momentum conservations, and includes a constitutive relation similar to that of linear visco‐elastic fluids. The further inclusion of the elastic effect allows us to describe a high‐order traffic model more comprehensively because the use of relaxation time indicates that vehicle drivers adjust their time headway in a reasonable and safe range. The self‐organizing behaviour is described by introducing the effects of pressure and visco‐elasticity from the point of view in fluid mechanics. Both the viscosity and elasticity can be determined by using the relaxation time and the traffic sound speed. The sound speed can be approximately represented by the road operational parameters including the free‐flow speed, the jam density, and the density of saturation if the jam pressure in traffic flows is identical to the total pressure at the flow saturation point. A linear stability analysis showed that the traffic flow should be absolutely unstable for disturbances with short spatial wavelengths. There are two critical points of regime transition in traffic flows. The first point happens at the density of saturation, and the second point occurs at a density relating on the sound speed and the fundamental diagram of traffic flows. By using a triangular form flow–density relation, a numerical test based on the new model is carried out for congested traffic flows on a loop road without ramp effect. The numerical results are discussed and compared with the result of theoretical analysis and observation data of traffic flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
    
The problem of studying public transportation systems with autonomous vehicles is challenging because of behavioral differences that make existing models poorly fit and the technical difficulties involved in studying large autonomous systems operating on a grand scale. In this paper, we propose the following: (i) an autonomous transportation network setting; (ii) a method for modeling autonomous vehicles in simulation; and (iii) a high‐performance simulation platform that allows analysis and visualization of transportation technologies. Results from microsimulation confirm theoretical benefits and improvements from employing autonomous systems in an example setting and highlight the platform's general ability to allow researchers to implement novel transportation systems and study the cost benefit variations occurring between them. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
    
Lu Sun 《先进运输杂志》2014,48(7):821-857
This paper uses spectral and time‐frequency analyses to treat three macroscopic traffic characteristics, namely, time mean speed, volume and occupancy as stochastic processes. Spectral and time‐frequency analyses are performed to characterize power spectral density (PSD), cross‐PSD, autocorrelation and cross‐correlation of these characteristics using TransGuide traffic data collected from four different freeways. It is found that low‐frequency components dominate the PSDs of speed, volume and occupancy at all times. The magnitude of PSDs decreases dramatically as frequency increases and remains almost at a constant level in high‐frequency regimes. A power law is found to exist, which describes the relationship between the frequency and the PSD of traffic characteristics. It is also found that speed can be properly modeled by a narrowband low‐pass stochastic process in a low‐frequency regime and by a nonzero mean white noise in a high‐frequency regime. Strong periodicities and synchronization are both shown in traffic flow. A variety of frequencies can be excited by congestion, and there is no dominant frequency found in stop‐and‐go traffic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Pedestrians as compared to vehicular traffic enjoy a high degree freedom of movement even in heavily congested areas. Consequently, there are more alternative links available to pedestrians between a given origin‐destination (O‐D) pair. This paper describes a study done by the University of Calgary to evaluate the factors affecting the choice of route on intra‐CBD trips or trips within the Central Business District (CBD).

An origin destination survey conducted in downtown Calgary, Alberta enabled the identification of the most significant factors influencing the choice. These factors were analyzed in relation to the physical characteristics of the location, personal characteristics of the trip maker and the type of the trip.

It appears that most people chose the shortest link and factors such as the level of congestion, safety or visual attractions were only secondary. This suggests that the length should be made a major consideration when planning and designing pedestrian links.  相似文献   

20.
    
The airport planning and decision making process exhibits various trade‐offs and complications due to the large number of stakeholders having different, and sometimes conflicting, objectives regarding the assessment of airport performance. As a result, the airport performance assessment necessitates the use of advanced modelling capabilities and decision support systems or tools in order to capture the multifaceted aspects, interests and measures of airport performance like capacity, delays, safety, security, noise and cost‐effectiveness. Presently, airport decision makers lack decision support tools able to provide an integrated view of total airport (both airside and landside) operations and analyse at a reasonable effort and decision‐oriented manner the various trade‐offs involved among different airport performance measures. The objective of this paper is twofold: (i) to describe the decision‐oriented modelling framework and development process of a decision support system for total airport operations management and planning, and (ii) to demonstrate the decision support capabilities and basic modelling functionalities of the proposed system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号