首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study is to investigate the relationship between field‐measured conflicts and simulated conflicts estimated from microsimulation model (PARAMICS) using the surrogate safety assessment model. An urban signalized intersection was selected for analysis. Automated video‐based computer vision techniques were used to identify field conflicts. The applicability of a two‐step model calibration procedure applied to VISSIM in a recent study was investigated using PARAMICS. In the first calibration step, the PARAMICS model was calibrated to ensure that the simulation gives reasonable results of average delay times. The second calibration step used a genetic algorithm procedure to calibrate PARAMICS parameters to enhance the correlation between simulated and field‐measured conflicts. Finally, the results obtained from PARAMICS were compared with results obtained from VISSIM. The comparison included three aspects: (i) the car‐following model and safety‐related parameters; (ii) the correlation between simulated and field‐measured conflicts; and (iii) the conflict spatial distributions. The results show that the default simulation model parameters give poor correlation with the field‐measured data, and therefore, using simulation models without a proper calibration should be avoided. Overall, good correlation between field‐measured and simulated conflicts was obtained after calibration for both models, especially at higher time‐to‐collision (TTC) values. At TTC threshold of 1.5 s, PARAMICS overestimates the number of conflicts and VISSIM underestimates it. Both models overestimated the number of conflicts at TTC threshold of 3.00 s. There were major differences between field‐measured and simulated conflicts spatial distributions for both simulation models. This indicates that despite the good correlation obtained from the calibration process, both PARAMICS and VISSIM do not capture the actual conflict occurrence mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper proposes a combined usage of microscopic traffic simulation and Extreme Value Theory (EVT) for safety evaluation. Ten urban intersections in Fengxian District in Shanghai were selected in the study and three calibration strategies were applied to develop simulation models for each intersection: a base strategy with fundamental data input, a semi-calibration strategy adjusting driver behavior parameters based on Measures of Effectiveness (MOE), and a full-calibration strategy altering driver behavior parameters by both MOE and Measures of Safety (MOS). SSAM was used to extract simulated conflict data from vehicle trajectory files from VISSIM and video-based data collection was introduced to assist trained observers to collect field conflict data. EVT-based methods were then employed to model both simulated/field conflict data and derive the Estimated Annual Crash Frequency (EACF), used as Surrogate Safety Measures (SSM). PET was used for EVT measurement for three conflict types: crossing, rear-end, and lane change. EACFs based on three simulation calibration strategies were compared with field-based EACF, conventional SSM based on Traffic Conflict Techniques (TCT), and actual crash frequency, in terms of direct correlation, rank correlation, and prediction accuracy. The results showed that, MOS should be considered during simulation model calibration and EACF based on the full-calibration strategy appeared to be a better choice for simulation-based safety evaluation, compared to other candidate safety measures. In general, the combined usage of microscopic traffic simulation and EVT is a promising tool for safety evaluation.  相似文献   

3.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Traffic flow prediction is an essential part of intelligent transportation systems (ITS). Most of the previous traffic flow prediction work treated traffic flow as a time series process only, ignoring the spatial relationship from the upstream flows or the correlation with other traffic attributes like speed and density. In this paper, we utilize a linear conditional Gaussian (LCG) Bayesian network (BN) model to consider both spatial and temporal dimensions of traffic as well as speed information for short‐term traffic flow prediction. The LCG BN allows both continuous and discrete variables, which enables the consideration of categorical variables in traffic flow prediction. A microscopic traffic simulation dataset is used to test the performance of the proposed model compared to other popular approaches under different predicting time intervals. In addition, the authors investigate the importance of spatial data and speed data in flow prediction by comparing models with different levels of information. The results indicate that the prediction accuracy will increase significantly when both spatial data and speed data are included. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Driver’s stop-or-run behavior at signalized intersection has become a major concern for the intersection safety. While many studies were undertaken to model and predict drivers’ stop-or-run (SoR) behaviors including Yellow-Light-Running (YLR) and Red-Light-Running (RLR) using traditional statistical regression models, a critical problem for these models is that the relative influences of predictor variables on driver’s SoR behavior could not be evaluated. To address this challenge, this research proposes a new approach which applies a recently developed data mining approach called gradient boosting logit model to handle different types of predictor variables, fit complex nonlinear relationships among variables, and automatically disentangle interaction effects between influential factors using high-resolution traffic and signal event data collected from loop detectors. Particularly, this research will first identify a series of related influential factors including signal timing information, surrounding traffic information, and surrounding drivers’ behaviors using thousands drivers’ decision events including YLR, RLR, and first-to-stop (FSTP) extracted from high-resolution loop detector data from three intersections. Then the research applies the proposed data mining approach to search for the optimal prediction model for each intersection. Furthermore, a comparison was conducted to compare the proposed new method with the traditional statistical regression model. The results show that the gradient boosting logit model has superior performance in terms of prediction accuracy. In contrast to other machine learning methods which usually apply ‘black-box’ procedures, the gradient boosting logit model can identify and rank the relative importance of influential factors on driver’s stop-or-run behavior prediction. This study brings great potential for future practical applications since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly.  相似文献   

6.
Short-term traffic volume forecasting represents a critical need for Intelligent Transportation Systems. This paper develops a novel forecasting approach inspired by human memory, called the spinning network (SPN). The approach is then used for short-term traffic volume forecasting, utilizing a data set compiled from real-world traffic volume data obtained from the Hampton Roads traffic operations center in Virginia. To assess the accuracy of the SPN approach, its performance is compared to two other approaches, namely a back propagation neural network and a nearest neighbor approach. The transferability of the SPN approach and its ability to forecast for longer time periods into the future is also assessed. The results of the performance testing conducted in this paper demonstrates the superior predictive accuracy and drastically lower computational requirements of the SPN compared to either the neural network or the nearest neighbor approach. The tests also confirm the ability of the SPN to predict traffic volumes for longer time periods into the future, as well as the transferability of the approach to other sites.  相似文献   

7.
A grid based modelling approach akin to cellular automata (CA) is adopted for heterogeneous traffic flow simulation. The road space is divided into a grid of equally sized cells. Moreover, each vehicle type occupies one or more cell as per its size unlike CA traffic flow model where each vehicle is represented by a single cell. Model needs inputs such as vehicle size, its maximum speed, acceleration, deceleration, probability constants, and arrival pattern. The position and speed of the vehicles are assumed to be discrete. The speed of each vehicle changes according to its interactions with other vehicles, following some stochastic rules depending on the circumstances. The model is calibrated and validated using real data and VISSIM. The results indicate that grid based model can reasonably well simulate complex heterogeneous traffic as well as offers higher computational efficiency needed for real time application.  相似文献   

8.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The travel decisions made by road users are more affected by the traffic conditions when they travel than the current conditions. Thus, accurate prediction of traffic parameters for giving reliable information about the future state of traffic conditions is very important. Mainly, this is an essential component of many advanced traveller information systems coming under the intelligent transportation systems umbrella. In India, the automated traffic data collection is in the beginning stage, with many of the cities still struggling with database generation and processing, and hence, a less‐data‐demanding approach will be attractive for such applications, if it is not going to reduce the prediction accuracy to a great extent. The present study explores this area and tries to answer this question using automated data collected from field. A data‐driven technique, namely, artificial neural networks (ANN), which is shown to be a good tool for prediction problems, is taken as an example for data‐driven approach. Grey model, GM(1,1), which is also reported as a good prediction tool, is selected as the less‐data‐demanding approach. Volume, classified volume, average speed and classified speed at a particular location were selected for the prediction. The results showed comparable performance by both the methods. However, ANN required around seven times data compared with GM for comparable performance. Thus, considering the comparatively lesser input requirement of GM, it can be considered over ANN in situations where the historic database is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

11.
Providing commuters with traffic information or advising them of alternative routes during traffic incidents can alleviate congestion. For decades, advanced traveler information services (ATIS) have been devised and dedicated to this role. ATIS comprises a wide variety of technologies across the world, including radio traffic information (RTI) advisory service. RTI is common in both developed and developing countries. Although extensive literature and evaluation results of ATISs and RTI are available in developed countries, little attention has been devoted to that in developing countries. This work provides a modeling platform to study drivers' response to en route traffic information provided by Radio‐Payam broadcasting service in Tehran, the capital city of the developing country of Iran. The results are compared with counterpart cases in developed countries. Past studies and this study have employed conventional discrete models for drivers' response, such as ordered logit and ordered probit. This work evaluates the accuracy level of these conventional models in comparison with a developed neural‐network (NN) model, because it has been widely proven that NN models are highly precise. It has also been found that, apart from reliability, the conventional models are within an acceptable level of prediction accuracy compared with the NN models. The results show a high degree of similarities between the case of Tehran and its counterparts in the developing countries. The results also deliver some insights on how to improve or better implement the ATIS technologies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Foresee traffic conditions and demand is a major issue nowadays that is very often approached using simulation tools. The aim of this work is to propose an innovative strategy to tackle such problem, relying on the presentation and analysis of a behavioural dynamic traffic assignment.The proposal relies on the assumption that travellers take routing policies rather than paths, leading us to introduce the possibility for each simulated agent to apply, in real time, a strategy allowing him to possibly re-route his path depending on the perceived local traffic conditions, jam and/or time already spent in his journey.The re-routing process allows the agents to directly react to any change in the road network. For the sake of simplicity, the agents’ strategy is modelled with a simple neural network whose parameters are determined during a preliminary training stage. The inputs of such neural network read the local information about the route network and the output gives the action to undertake: stay on the same path or modify it. As the agents use only local information, the overall network topology does not really matter, thus the strategy is able to cope with large and not previously explored networks.Numerical experiments are performed on various scenarios containing different proportions of trained strategic agents, agents with random strategies and non strategic agents, to test the robustness and adaptability to new environments and varying network conditions. The methodology is also compared against existing approaches and real world data. The outcome of the experiments suggest that this work-in-progress already produces encouraging results in terms of accuracy and computational efficiency. This indicates that the proposed approach has the potential to provide better tools to investigate and forecast drivers’ choice behaviours. Eventually these tools can improve the delivery and efficiency of traffic information to the drivers.  相似文献   

13.
The urban parking and the urban traffic systems are essential components of the overall urban transportation structure. The short-term interactions between these two systems can be highly significant and influential to their individual performance. The urban parking system, for example, can affect the searching-for-parking traffic, influencing not only overall travel speeds in the network (traffic performance), but also total driven distance (environmental conditions). In turn, the traffic performance can also affect the time drivers spend searching for parking, and ultimately, parking usage. In this study, we propose a methodology to model macroscopically such interactions and evaluate their effects on urban congestion.The model is built on a matrix describing how, over time, vehicles in an urban area transition from one parking-related state to another. With this model it is possible to estimate, based on the traffic and parking demand as well as the parking supply, the amount of vehicles searching for parking, the amount of vehicles driving on the network but not searching for parking, and the amount of vehicles parked at any given time. More importantly, it is also possible to estimate the total (or average) time spent and distance driven within each of these states. Based on that, the model can be used to design and evaluate different parking policies, to improve (or optimize) the performance of both systems.A simple numerical example is provided to show possible applications of this type. Parking policies such as increasing parking supply or shortening the maximum parking duration allowed (i.e., time controls) are tested, and their effects on traffic are estimated. The preliminary results show that time control policies can alleviate the parking-caused traffic issues without the need for providing additional parking facilities. Results also show that parking policies that intend to reduce traffic delay may, at the same time, increase the driven distance and cause negative externalities. Hence, caution must be exercised and multiple traffic metrics should be evaluated before selecting these policies.Overall, this paper shows how the system dynamics of urban traffic, based on its parking-related-states, can be used to efficiently evaluate the urban traffic and parking systems macroscopically. The proposed model can be used to estimate both, how parking availability can affect traffic performance (e.g., average time searching for parking, number of cars searching for parking); and how different traffic conditions (e.g., travel speed, density in the system) can affect drivers ability to find parking. Moreover, the proposed model can be used to study multiple strategies or scenarios for traffic operations and control, transportation planning, land use planning, or parking management and operations.  相似文献   

14.
Due to the noticeable environmental and economical problems caused by traffic congestion and by the emissions produced by traffic, analysis and control of traffic is essential. One of the various traffic analysis approaches is the model-based approach, where a mathematical model of the traffic system is developed/used based on the governing physical rules of the system. In this paper, we propose a framework to interface and integrate macroscopic flow models and microscopic emission models. As a result, a new mesoscopic integrated flow-emission model is obtained that provides a balanced trade-off between high accuracy and low computation time. The proposed approach considers an aggregated behavior for different groups of vehicles (mesoscopic) instead of considering the behavior of individual vehicles (microscopic) or the entire group of vehicles (macroscopic). A case study is done to evaluate the proposed framework, considering the performance of the resulting mesoscopic integrated flow-emission model. The traffic simulation software SUMO combined with the microscopic emission model VT-micro is used as the comparison platform. The results of the case study prove that the proposed approach provides excellent results with high accuracy levels. In addition, the mesoscopic nature of the integrated flow-emission model guarantees a low CPU time, which makes the proposed framework suitable for real-time model-based applications.  相似文献   

15.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

16.
Neural networks offer a potential alternative method of modelling driver behaviour within road traffic systems. This paper explores the application of neural networks to modelling the lane-changing decisions of drivers on dual carriageways. Two approaches are considered. The first, preliminary approach uses a prediction type of neural network with a single hidden layer and the back propagation learning algorithm to model the behaviour of an individual driver. A series of consecutive time-scan traffic patterns, which describe the driver's environment and changes over time as the selected vehicle travels along a link, are input to the neural network, which then predicts the new lane and position of the vehicle. Training data are collected from a human subject using an interactive driving simulation. The trained neural network successfully exhibited the rudiments of driving behaviour in terms of lane and speed changes. A major disadvantage of this approach was the difficulty in recording real-life data, which are required to train the neural network, for individual drivers. The second approach concentrates specifically on lane changing and makes use of a learning vector quantization classification type of neural network. Input to the neural network still consists primarily of time-scan traffic patterns, but the format is changed to facilitate the possibility of data acquisition using image processing. The neural network output classifies the input data by determining the new lane for the vehicle concerned. Performance in both testing and training was very good for data generated by the rule-based driver-decision model of a microscopic simulation. Performance in testing was less satisfactory for data taken directly from a road and highlighted the need for extensive data sets for successful training.  相似文献   

17.
Yield control and full signalization are typical traffic control solutions that can be used at large roundabouts. In the face of increasing congestion issues, it is preferred to use yield control during off‐peak periods and full signalization during peak periods. To automatically accommodate time‐varying vehicular demands, a multi‐level traffic control (MTC) is developed to implement hybrid yield control and fully actuated control at large four‐leg roundabouts. With new application of traffic control devices and traffic detection system, the right‐of‐way can be assigned to entering and circulating vehicles in three modes. The ‘all entering’ mode is equivalent to a yield control. The ‘no entering’ and ‘concurrent entering’ modes are equivalent to a fully actuated control. On the basis of time headways and occupancy times that are detected on the entry and circulatory roadways, the mode of right‐of‐way assignment can be changed in response to actual traffic conditions. For a specific mode of right‐of‐way assignment, traffic signal operation is managed by some detectable traffic events that are happening. The results of the simulation experiments conducted by VISSIM indicated that: (i) MTC was stabilized at the ‘all entering’ mode during off‐peak periods and at the ‘concurrent entering’ mode during peak periods; (ii) MTC would typically change the mode of right‐of‐way assignment according to actual traffic conditions as vehicular demands increased from off‐peak to peak or decreased from peak to off‐peak; and (iii) statistically speaking, MTC inherited the operational advantages of yield control and fully actuated control, and could be effective in improving the operational performance of large four‐leg roundabouts for all hours of the day, regardless of the level of left‐turn ratios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an enhanced cell transmission model (CTM) to capture traffic operation at signalized intersections without explicit permissive left‐turn yielding rules (i.e. aggressive permissive left‐turn maneuvers may not necessarily yield to opposing through traffic), which can be widely observed in many developing countries. Different from previous studies that focus on traffic dynamics on approaching links, this study contributes to modeling traffic operations within the intersection. A novel cell transmission framework with various types of virtual cells is proposed to model the dynamics of traffic movements from approach to exit. The unique phenomenon of competitive occupying of the conflict point between the left turn and opposing through movements is modeled. The cell state indicating its blockage is proposed to capture the dynamic queue formulation and dissipation and to evaluate the operational traffic performance at the intersection. Field validation results show that the proposed model can capture the operation of traffic at signalized intersections without explicit permissive left‐turn yielding rules with significantly higher level of accuracy than traditional traffic flow models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

In recent years, there has been considerable research interest in short-term traffic flow forecasting. However, forecasting models offering a high accuracy at a fine temporal resolution (e.g. 1 or 5?min) and lane level are still rare. In this study, a combination of genetic algorithm, neural network and locally weighted regression is used to achieve optimal prediction under various input and traffic settings. The genetically optimized artificial neural network (GA-ANN) and locally weighted regression (GA-LWR) models are developed and tested, with the former forecasting traffic flow every 5-min within a 30-min period and the latter for forecasting traffic flow of a particular 5-min period of each for four lanes of an urban arterial road in Beijing, China. In particular, for morning peak and off-peak traffic flow prediction, the GA-ANN 5-min traffic flow model results in average errors of 3–5% and most 95th percentile errors of 7–14% for each of the four lanes; for the peak and off-peak time traffic flow predictions, the GA-LWR 5-min traffic flow model results in average errors of 2–4% and most 95th percentile errors are lower than 10% for each of the four lanes. When compared to previous models that usually offer average errors greater than 6–15%, such empirical findings should be of interest to and instrumental for transportation authorities to incorporate in their city- or state-wide Advanced Traveller Information Systems (ATIS).  相似文献   

20.
There has been a growing interest in using surrogate safety measures such as traffic conflicts to analyse road safety from a broader perspective than collision data alone. This growing interest has been aided by recent advances in automated video‐based traffic conflict analysis. The automation enables accurate calculation of various conflict indicators such as time‐to‐collision and post‐encroachment time. These indicators rely on road users getting within specific temporal and spatial proximity from each other and therefore assume that proximity is a surrogate for conflict severity. However, this assumption may not be valid in many driving environments where close interactions between road users are common. The objective of this paper is to investigate the applicability of time proximity conflict indicators for evaluating pedestrian safety in less‐organized traffic environments with a high mix of road users. Several alternative behavioural conflict indicators based on detecting pedestrian evasive actions are recommended to better measure traffic conflicts in such traffic environments. These indicators represent variations in the spatio‐temporal gait parameters (step length, step frequency and walk ratio) immediately before the conflict point. A highly congested shared intersection in Shanghai, China, with frequent pedestrian conflicts is used as a case study. Traffic conflicts are analysed with the use of automated video‐based analysis techniques. The results showed that evasive action‐based indicators have higher potential to identify pedestrian conflicts and measure their severity in high mix less organized traffic environments than time proximity measures such as time‐to‐collision and post‐encroachment time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号