首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A three-dimensional finite difference tidal model, including advective and diffusive transport of salinity, is used in the two-layer model for simulation of Rhine water outflow. Layer depths are adjusted in a way that no advective transports between upper and lower layer take place in case of sufficiently stable stratification.Model results show frontal eddy development related to (limited) growing internal waves in case of weak northeasterly to southeasterly winds. It is shown that baroclinically unstable conditions occur, related to vertical velocity shear, resulting in frontal meanders with wave lengths between 18 and 30 km. Satellite images of sea surface temperature show a comparable behaviour of the temperature front, which is strongly correlated with the salinity front of the Rhine plume.  相似文献   

2.
Three different versions of a baroclinic three-dimensional circulation model of the North Sea are used to obtain information on the wind and density interactions in the North Sea ROFIs (Regions Of Freshwater Influence): the standard version with fully prognostic treatment of salinity and temperature is compared to a barotropic model run on the same grid on the one hand and to an also fully prognostic model run on a four times coarser grid on the other hand. In order to gain knowledge on the wind and density interactions, two opposing wind directions are chosen for investigation, namely a time of strong north wind, 21st–28th April 1982, and a time of strong southwest wind, 22nd–24th May 1982. In the April case the effect of the salinity gradients on the border of the ROFIs of Rhine, Weser, Ems and Elbe, i.e. along the continental shore, is shown to lead to a clear enhancement of the mean surface currents. In May this result is partly disguised by the additional effect of the thermocline in the deeper parts of the North Sea, i.e. in the classical shelf sea regime region. Nevertheless, the same pattern of enhanced mean surface currents along the coast is detected and is of the same order of magnitude as in the April case. It is thus concluded that although the circulation in the North Sea is reversed by the wind, the density induced component of the general circulation is modified only slightly.  相似文献   

3.
The outflow of Rhine water into the shallow Southern Bight of the North Sea leads to almost discontinuous vertical density distributions and sharp frontal structures around the river mouth. Strong tidal motion, wind and baroclinic effects have large influence on the dynamics and dispersion of river water. A three-dimensional tidal model, including advective and diffusive transport of salinity, is used in the two-layer mode for simulation of Rhine water outflow to quantify the interaction of the different processes and the effect on dispersion and mixing of river water. Layer depths are adjusted in a way that no advective transports between upper and lower layer take place in case of sufficiently stable stratification. In case of weak or no stratification the upper layer depth is fixed, and advective transports between layers are computed. Model results show frontal eddy development and (limited) growing internal waves due to baroclinic instability. Comparisons with observational data are presented.  相似文献   

4.
The EC MAST project PROFILE (Processes in Regions of Freshwater Influence, ROFIs) aims to develop process understanding and tested numerical models for ROFIs. This includes the role of physical processes controlling water-property distributions, suspended sediments controlling the availability of light, nutrients and phytoplankton growth. The project comprises: (1) construction of a 3D nearshore model, with high resolution (1 h and one km approx.) and a framework coupling modules for hydrodynamics (tides, effects of winds and waves, currents, temperature, salinity, turbulence and diffusivity), sediments, plankton, nutrients and oxygen, (2) investigation of methods to include ROFI model detail in coarser shelf-wide models, (3) specific tests of model components against measurements, (4) tests of model calculations against measurements in contrasted ROFIs, (5) systematic observations suitable for these model tests (time-series over a seasonal cycle for dynamics and intermittency, good vertical resolution and spatial surveys) of the contrasted Rhine, Clyde and Thermaikos Bay ROFIs, complementing earlier measurements in the ROFI areas of the Rhine, German Bight and Po, (6) interpretation and comparison of the contrasted ROFIs' behaviour, (7) a defined set of observations, model code and output suitable for subsequent integration and promulgation as test data and a nearshore model for wider use.  相似文献   

5.
The residual circulation of the Ría de Muros, a large coastal embayment in NW Spain, are studied using a three-dimensional baroclinic finite-difference model. The driving forces considered by the model include the tide, winds, river inflows and density forcing at the open boundary. In situ data of current velocity and direction, water level, wind velocity and direction, river discharge, and temperature and salinity are used for model validation. Simulated and observed time series of water level and current velocity are in good agreement. Once validated, the model is applied to compute the residual circulation induced by the relevant agents of the ría hydrodynamics—the tide, an upwelling-favourable wind characteristic of spring and summer, a downwelling-favourable wind typical of winter, and freshwater inflows associated with high river runoff. The resulting residual circulation differ notably. The tide does not generate significant residual flows except in the inner ría. By contrast, winds and river discharges induce important residual flows throughout; in the middle and outer ría they generate a 3D residual circulation pattern which renders the conventional two-layer scheme of estuarine circulation too simplistic in this case. Thus, this first application of a 3D numerical model to the Ría de Muros sheds new light on its fundamental hydrodynamics.  相似文献   

6.
Stratification in the Rhine ROFI is very variable; the mean water column stability is controlled by the combined effect of tidal, wind and wave stirring which, at times, brings about complete vertical homogeneity. Control by the mixing variables has been elucidated by a regression analysis of mean stratification on the components of the windstress and significant wave height. There is strong partial correlation with all three variables which explains between 56% and 65% of the variance in two time series of observations in October 1990 and September 1992, respectively. During periods of low stirring the water column was observed to re-stratify over the whole inshore region through the relaxation of the horizontal gradients under gravity and with the influence of rotation. Superimposed on the mean stratification there is strong semi-diurnal variation, occurring throughout the stratified region at times of reduced mixing. The amplitude of this semi-diurnal variation is of the same order as the mean stability and frequently results in conditions being mixed or nearly mixed once per tide. This semi-diurnal variation results primarily from cross-shore tidal straining which interacts with the main density gradient to induce stratification. The hypothesis that water column stability is controlled by the combination of these processes has been tested using a reduced physics model which has been successful in reproducing the main features of both the mean and semi-diurnal components of stratification.  相似文献   

7.
The freshwater plume in the western Gulf of Maine is being studied as part of an interdisciplinary investigation of the physical transport of a toxic alga. A field program was conducted in the springs of 1993 and 1994 to map the spatial and temporal patterns of salinity, currents and algal toxicity. The observations suggest that the plume's cross-shore structure varies markedly as a function of fluctuations in alongshore wind forcing. Consistent with Ekman drift dynamics, upwelling favorable winds spread the plume offshore, at times widening it to over 50 km in offshore extent, while downwelling favorable winds narrow the plume width to as little as 10 km.Using a simple slab model, we find qualitative agreement between the observed variations of plume width and those predicted by Ekman theory for short time scales of integration. Near surface current meters show significant correlations between cross-shore currents and alongshore wind stress, consistent with Ekman theory. Estimates of the terms in the alongshore momentum equation calculated from moored current meter arrays also indicate a dominant Ekman balance within the plume. A significant correlation between alongshore currents and winds suggests that interfacial drag may be important, although inclusion of a Raleigh drag term does not significantly improve the alongshore momentum balance.  相似文献   

8.
The distinctive feature of all ROFI (Regions Of Freshwater Influence) systems is the input of significant amounts of buoyancy as freshwater from river sources. If the spatial scale is unrestricted by coastal topography and stirring is weak, this input tends to drive a coast-parallel flow in which the Coriolis force constrains a wedge of low density water against the coastal boundary. Without frictional effects, this flow is subject to baroclinic instability which induces large meanders and eddies in the flow but in, many ROFIs, the tidal flow induces frictional effects which stabilise the density driven flow.In the absence of the effects of rotation and stirring, the buoyancy input tends to induce stratification through an estuarine circulation in the direction of the gradient. When stirring is applied, by the action of wind, waves or tidal flow, the density current is suppressed but is rapidly re-established when stirring ceases, as in the Linden-Simpson (1988) laboratory tank experiments. In real ROFI systems, a combination of all these processes operates so that the structure of the water column and the flow is the result of a competition between the stratifying influence of buoyancy input and the net stirring effect of the wind, waves and the tides. This competition is more difficult to analyse than the heating-stirring competition, because freshwater buoyancy input is not spatially uniform but enters at discrete sources along the coast and its subsequent spreading has to be determined.While the springs-neaps cycle in tidal stirring imposes a regular fortnightly modulation on vertical mixing, the influence of the wind is irregular and depends, not just on the magnitude of the stress, but also on the direction in which it acts. In some exposed shallow water situations there may also be significant stirring due to waves generated by non-local winds.ROFI systems are further complicated by the action of tidal straining in which differential advection, due to vertical shear in the tide, interacts with the density gradient to generate fluctuations in vertical stability at the tidal frequency which, in some cases, are of sufficient amplitude to switch the water column between stable stratification and vertical density homogeneity each tidal cycle. This straining along with the other ROFI processes have been incorporated into a series of 1-D models to provide a more objective test of the hypotheses about the mechanisms involved. Comparison of model hindcasts with observations indicate that we now have a first-order understanding of the complex behaviour of ROFIs.On a global scale it is clear that ROFIs represent an important component of the shelf-sea environment of particular concern in relation to the impact of pollutant discharges. To date, most studies of ROFI's have concentrated on systems in temperate latitudes but attention needs to be focused on the very extensive ROFIs in tropical regions where most of the world's river discharge enters the ocean. In monsoonal regions, these inputs exhibit strong seasonal modulation which may, in competition with tidal stirring, result in an annual cycle of stratification and the formation of fronts.  相似文献   

9.
The Chesapeake Bay is vulnerable to severe flooding caused by hurricanes and strong Northeasters. A 3D storm surge model of the Chesapeake Bay is developed for studying the impact of model domain size, wind directions and Ekman transport on the storm surge in the Chesapeake Bay. The model encompasses the Chesapeake Bay and the US East Coast shelf to reduce the influence of model domain size on surge prediction inside the Chesapeake Bay and to account for both local and remote wind effects. This study used 3D model experiments, with respect to different wind directions, to diagnose the relative influences of the local and remote wind effects and Ekman transport on spatial surge distribution during storm events. The model results confirmed that spatial surge distribution can be well explained by the superposition of two distinct physically driven mechanisms during a storm event: incoming surge wave caused by remote effects and local wind forcings. A large model domain is a necessity for predicting storm surge accurately inside the Chesapeake Bay. The model results suggest that the interactions of the incoming surge propagating into the Bay and the local wind forcing from N and NE directions result in an enhanced setup in the lower to middle portions of the Bay, whereas the superposition of incoming surge and the local wind forcing from S and SE directions enhance the surge in the upper Bay region. A combined northwesterly wind over the middle to upper portions of the Bay and southwesterly wind over the lower Bay can cause a large setdown throughout the entire Bay. The Ekman setup along the coast contributes significantly to the water level variations during storm events. It enhances (reduces) surge inside the Bay under the wind forcings from N and NE (SW, S, and SE) directions.  相似文献   

10.
A multilevel model was applied to the calculation of permanent current and density variation in Tokyo Bay, and the change of the state of stratification and the accompanying current field was simulated. In the numerical simulation, the observed field data such as wind conditions and atmospheric temperature were used as input to the calculation, and the results were compared with the observed values of currents, salinity, and sea temperature. Comparison of simulation results and observed data revealed that the numerical simulation could describe well the current and density field governed by wind under stratified conditions. In particular, the long-term variations of the vertical structure of salinity and temperature from summer to autumn could be predicted qualitatively, as could the long-term variations of the vertical structure of salinity and temperature from summer to autumn. Additionally, the effects of boundary conditions on the results of numerical simulations were examined. As a result, it was clarified that the simulation results of salinity stratification were strongly affected by the boundary conditions such as river discharge and the vertical structure of salinity at the open boundary adjacent to the outer ocean.  相似文献   

11.
A one-dimensional (1D) coupled physical–microbiological model has been applied to a site in the central North Sea. The impact of the choice of the turbulence closure scheme on the modelling the primary production has been investigated.The model was run with four different parameterisations of vertical mixing of heat, momentum and dissolved and suspended matters, using M2 tidal forcing and the hourly mean meteorological forcing of 1989 to reproduce the annual thermal structure and primary production. The four mixing parameterisations are: Level 2 turbulence closure scheme [Mellor, G.L., Yamada, T., 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791–1806; Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical Fluid problems. Rev. Geophys. Space Phys. 20 (4) 851–875] using an explicit numerical scheme [Sharples, J., Tett, P., 1994. Modelling the effect of physical variability on the midwater chlorophyll maximum. J. Mar. Res. 52, 219–238]; a version of the Level 2.5 turbulence closure scheme [Galperin, B., Kantha, L.H., Hassid, S., Rosati, A., 1988. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45, 55–62; Ruddick, K.G., Deleersnijder, E., Luyten, P.J., Ozer, J., 1995. Haline stratification in the rhine/meuse freshwater plume: a 3D model sensitivity analysis. Cont. Shelf Res. 15 (13) 1597–1630] simplified to use an algebraic mixing length by Sharples and Simpson [Sharples, J., Simpson, J.H., 1995. Semidiurnal and longer period stability cycles in the Liverpool Bay region of freshwater influence. Cont. Shelf Res. 15, 295–313], also solved explicitly; the same simplified L2.5 scheme with an implicit numerical solution and modified vertical discretisation scheme [Annan, J.D., 1999. Numerical methods for the solution of the turbulence energy equations in the shelf seas. Int. J. Numer. Methods Fluids 29, 193–206]; and another version of the same scheme (but using a different algebraic mixing length) as described by Xing and Davies [Xing, J., Davies, A.M., 1996a. Application of turbulence energy models to the computation of tidal currents and mixing intensities in the shelf edge regions. J. Phys. Oceanogr. 26, 417–447; Xing, J., Davies, A.M., 1996b. Application of a range of turbulence models to the computation of tidal currents and mixing intensities in shelf edge regions. Cont. Shelf. Res. 16, 517–547; Xing, J., Davies, A.M., 1998. Application of a range of turbulence energy models to the computation of the internal tide. Int. J. Numer. Methods Fluids 26, 1055–1084]. Various model outputs at the sea surface and in depth profiles have been compared with data collected in 1989 as part of the North Sea Project [Huthnance, J.M., 1990. Progress on North Sea Project. NERC News, vol. 12, pp. 25–29, UK]. It is shown that the biological results are extremely sensitive to the small changes in the physical conditions, which arise due to the different turbulence schemes tested. The timing of the spring bloom and the maintenance of the midwater chlorophyll maximum all differ greatly between model runs, and the gross primary production varies by a factor of two from the highest to lowest results. The simplified Level 2.5 scheme, implemented using the numerical methods of Annan [Annan, J.D., 1999. Numerical methods for the solution of the turbulence energy equations in the shelf seas. Int. J. Numer. Methods Fluids 29, 193–206], produces results, which give the best agreement with the available data.  相似文献   

12.
A modelling system for coupled physical–biogeochemical simulations in the water column is presented here. The physical model component allows for a number of different statistical turbulence closure schemes, ranging from simple algebraic closures to two-equation turbulence models with algebraic second-moment closures. The biogeochemical module consists of models which are based on a number of state variables represented by their ensemble averaged concentrations. Specific biogeochemical models may range from simple NPZ (nutrient–phytoplankton–zooplankton) to complex ecosystem models. Recently developed modified Patankar solvers for ordinary differential equations allow for stable discretisations of the production and destruction terms guaranteeing conservative and non-negative solutions. The increased stability of these new solvers over explicit solvers is demonstrated for a plankton spring bloom simulation. The model system is applied to marine ecosystem dynamics the Northern North Sea and the Central Gotland Sea. Two different biogeochemical models are applied, a conservative nitrogen-based model to the North Sea, and a more complex model including an oxygen equation to the Baltic Sea, allowing for the reproduction of chemical processes under anoxic conditions. For both applications, earlier model results obtained with slightly different model setups could be basically reproduced. It became however clear that the choice for ecosystem model parameters such as maximum phytoplankton growth rates does strongly depend on the physical model parameters (such as turbulence closure models or external forcing).  相似文献   

13.
Variability of the Bohai Sea circulation based on model calculations   总被引:6,自引:0,他引:6  
The circulation and the hydrography of the Bohai Sea are simulated with the Hamburg Shelf Ocean Model (HAMSOM). The model is three-dimensional, prognostic baroclinic and has a resolution of 5 min in latitude and longitude and 10 layers in the vertical. It is initialised and forced with the five main tidal constituents, temperature and salinity distributions taken from the Levitus database, monthly mean river run-off values and European Centre for Medium Range Weather Forecast (ECMWF) re-analysed data of air pressure, wind stress and of those parameters relevant for the calculation of heat fluxes. The simulation period covers 14 years from 1980 to 1993 due to the availability of the time-dependent ECMWF forcing.The results are analysed by means of time series and EOFs focussing on the interpretation of fluctuations with periods above the tidal cycle. Furthermore, tracer simulations are carried out and turnover times are calculated in order to evaluate the importance of these fluctuations on the renewal and transport of water masses in the Bohai Sea.One of the major outcomes of the investigation is the overall dominance of the annual cycle in all hydrographic parameters and the importance of stochastic weather fluctuations on the transport of water masses in the Bohai Sea.  相似文献   

14.
Variability of river plumes off Northwest Iberia in response to wind events   总被引:4,自引:0,他引:4  
The Western Iberian Buoyant Plume (WIBP) is a low-salinity lens formed by river discharge and continental run-off extending along the shelf off Northwest Iberia. The variability of this structure is evaluated with a numerical model forced by real meteorological data and climatologic river discharge during late 2002, when conditions were those of a typical autumn. The direction and intensity of the wind-induced Ekman transport, but also the previous conditions and the duration of the event are found to determine plume behavior. We have identified three characteristic situations: a) confinement of the plume to the coast during downwelling — southerly-winds, b) expansion of the plume during the declining phase of the downwelling event by relaxation of the wind, and c) expansion of the plume by upwelling — northerly-winds. The short time scale of the response of the plume (1–3 h) adds timing between wind events and the phase of the tide as an additional source of variability. In all cases the Iberian Poleward Current (IPC), a saltier and warmer poleward current flowing over the slope, responds as well to wind changes. Furthermore, our simulations illustrate how topography and differences in the river discharge induce local differences in dynamics. Comparisons to available observations show a reasonable model skill. Differences between wind measurements and wind forcing applied to the model appear to be a major source of uncertainty in model results.  相似文献   

15.
A three dimensional hydrodynamic model of the Malin-Hebrides shelf region is used to investigate the spatial variability of the wind and tidally induced residual flow in the region and the influence of flow from the Irish Sea and along the shelf edge. By this means it is possible to understand the spatial variability in the long term observed flow fields in the region and the range of driving forces producing this flow. The model uses a sigma coordinate grid in the vertical with a finer grid in the near surface and near bed shear layers. The vertical diffusion of momentum in the model is parameterised using an eddy viscosity coefficient which is derived from turbulence energy closure models. Two different turbulence models are used to compute the eddy viscosity, namely a two-equation (itq2−q2ℓ) model which has prognostic equations for both turbulence energy and mixing length and a simpler model in which the mixing length is a specified algebraic function of the water depth.The wind induced response to spatially and temporally constant orthogonal wind stresses, namely westerly and southerly winds of 1 N m−2, are derived from the model. By using orthogonal winds and assuming linearity, then to first order the response to any wind direction can be derived. Computed flows show a uniform wind driven surface layer of magnitude about 3% of the wind speed and direction 15 ° to the right of the wind, in deep water. Currents at depth particularly in the shelf edge and near coastal region show significant spatial variability which is related to variations in bottom topography and the coastline.Calculations show that tidal residual flows are only significant in the near coastal regions where the tidal current is strong and exhibits spatial variability. Flow into the region from the Irish Sea through the North Channel although having its greatest influence in the near coastal region, does affect currents near the shelf edge region. Again the spatial variability of the flow is influenced by topographic effects.A detailed examination of wind induced current profiles together with turbulence, mixing length and viscosity, at a number of locations in the model from deep ocean to shallow near coastal, shows that both turbulence models yield comparable results, with the mixing length in the two equation model showing a similar dependence to that specified in the simpler turbulence model.Calculations clearly show that flow along the shelf edge area to the west of Ireland and from the Irish Sea entering the region, together with local wind forcing can have a major effect upon currents along the Malin-Hebrides shelf. The flow fields show significant spatial variability in the region, comparable to those deduced from long term tracer measurements. The spatial variability found in the calculations suggests that a very intense measurement programme together with inflow measurements into the area is required to understand the circulation in the region, and provide data sets suitable for a rigorous model validation.  相似文献   

16.
彭超  冯光  郑文涛  刘晓东 《船舶工程》2020,42(S1):169-172
在平台设计过程中,海洋平台受到的风载荷是稳性分析与结构设计需要考虑的重要因素。本文采用CFD技术,对某型半潜式钻井平台在作业工况下受到的风载荷进行了预报,分析了湍流模型、风速剖面形式、湍流强度分布等因素对半潜式钻井平台风载荷的影响。结果表明:不同湍流模型对海洋平台风载荷的预报偏差在2%以内,可以忽略湍流模型的影响;风速剖面对风载荷有较大影响,随着风速梯度的增加而增大;湍流强度分布对海洋平台风载荷的影响在6%以内。研究结论可为建立高精度的海洋平台风载荷数值预报方法提供技术支持。  相似文献   

17.
Ekman transport is studied close to the Galician coast by means of wind data provided by the QuikSCAT satellite from November 1999 to October 2005. Three different coastal zones are identified, western coast from Miño River to Cape Finisterre, middle coast from Cape Finisterre to Cape Ortegal and northern coast, from Cape Ortegal to Cape Peñas. In addition to existence of long-term variations, the periodicity of the transport signal is characterized by an annual component (365 days), a seasonal fluctuation (50–80 days) and a time scale related to passing storms (15–20 days). Although the periodicity of the signal is similar at the three zones due to external meteorological forcing, the Ekman transport is modulated by the presence of the coast, in such a way that seasonal patterns vary in intensity and direction along the coast. Thus, the spring–summer pattern is characterized by high transport at the western coast, pointing seaward perpendicular to the shore-line. The same orientation is observed at the middle coast although with a lower magnitude. Finally, Ekman transport at the northern coast points landward and oblique to the shore-line. The different transport orientations are shown to be responsible for the upwelling probability variation along the coast. On the other hand, the autumn–winter pattern does not show a clear trend with important inter-annual differences showing the high variability of Ekman transport for this period.  相似文献   

18.
A response of the circulation in the Japan/East Sea (JES) to different kinds of wind forcing is studied, with the emphasis on the warm season, using a primitive equation oceanic model. Wind forcing is based on typical patterns obtained from complex empirical orthogonal functions of 1°-gridded NCEP/NCAR 6 h winds for 1998–2005. These patterns are distinguished by a prevailing wind direction. Northwestern wind and strong cyclonic (C) curl prevail in winter, while a variety of patterns occur in the warm season, differing in the wind direction and curl. Three model runs are performed to examine the circulation in response to a prevailing C wind stress curl or an alternating C and anticyclonic (AC) curl or a strong C curl in the warm season. The simulated features are consistent with the observational evidence, in particular with thermal fronts and frequent eddy locations derived from multi-year infrared satellite imagery. The simulated C circulation intensifies and the subarctic region extends southward with the strengthening of a summer C wind stress curl over the JES. Variability of Subarctic Front (SF) in the western JES (between 130°E and 133°E) is strongly affected by summer wind stress curl. Forcing by an AC curl tends to shift SF northward, while SF shifts to the south under the forcing by a C curl, reaching the southern Ulleung Basin in the case of the strong C curl. In the northwestern JES (off Peter the Great Bay, Russia, and North Korea), the SF northwestern branch (NWSF) is simulated. It is a known feature in autumn and early winter and can also occur in the warm season. The simulation results suggest an AC wind stress curl as the forcing of the formation of the NWSF in the warm season. The Siberia Seamount and sharply bending coastline near Peter the Great Bay facilitate partial separation of the Primorye (Liman) Current from the coast. The wind stress curl can be an additional forcing of the Tsushima Warm Current (TWC) branching off the Korea Strait to the East Korea Warm Current (EKWC) and the offshore branch (OB). In the warm season, the simulated TWC bifurcation occurs farther north, the EKWC is strong, and the OB is weak under the forcing of the AC wind stress curl. The EKWC is weak and the OB is strong under the forcing of the strong C wind stress curl.  相似文献   

19.
We investigate a role for vertical migration in stratified coastal water, where the swimming speed is generally significantly less than the typical turbulent fluctuations in a tidally-mixed bottom layer. In our modelling approach we use a k- turbulence model to describe the physical forcing, a Lagrangian random walk model to describe the vertical displacement of individual cells in response to turbulence and due to cell motility, and a phytoplankton growth model to direct the swimming behaviour of the phytoplankton according to their light and nutrient requirements. The model results show how the cells form a stable subsurface chlorophyll maximum (SCM) at the base of the thermocline where episodic tidal turbulence causes erosion of part of the SCM biomass into the bottom mixed layer (BML). We then focus on the question of whether an ability to swim (weakly, compared to typical bottom layer turbulent intensities) provides any advantage by allowing return to the SCM. Our results show that tidal turbulence in the BML helps both motile and neutrally-buoyant cells by periodically pushing them into the base of the thermocline. Motile cells then have the advantage that they can swim further into the thermocline towards higher light which also reduces the likelihood of being re-mixed back into the BML.  相似文献   

20.
Using the SKAGEX dataset for evaluation of ocean model skills   总被引:1,自引:0,他引:1  
Numerical ocean models are now being applied in numerous oceanographic studies. However, the qualities of the model results are often uncertain and there is a great need for standards and procedures for evaluation of the skills of numerical general circulation models. In this paper measurements from repeated hydrographical sections across Skagerrak taken in 1990, the SKAGEX dataset, are used to evaluate the skills of two σ-coordinate ocean models and to study the sensitivity of these models to model parameters. A methodology for quantification of model skills based on observations from repeated hydrographical sections in general is suggested. Area averages of absolute differences are for Skagerrak completely dominated by the discrepancies in the upper few meters of the ocean and may not be used to assess models' abilities to reproduce the fields in the larger and deeper part of the ocean. Therefore, discrepancies between average values in time from the observed fields and time averaged values from model outputs are related to the natural variability of the fields. The numbers produced with the suggested measure are relative numbers that will be specific for each section and for each series of observation. Ideally we would therefore like to see the measures computed for a number of sections for various models and choices of model parameters in order to assess model skills. The value of the SKAGEX dataset as a tool for model improvements is demonstrated. Evidence to support the importance of applying non-oscillatory, gradient preserving advection schemes in areas with sharp density fronts is given. The method is used to identify that the forcing/initial values/boundary values for the temperature field are inferior to the corresponding values for the salinity field. With the present coarse resolution, 11 layers in the vertical, it is shown that it is far from obvious that the quality of the model results improve when replacing simple Richardson number formulations for vertical mixing processes with higher order turbulence closure in the Skagerrak area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号