首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
SUMMARY

The general form of the equations of motion of a symmetric railway vehicle with two unsymmetric two-axle bogies is derived. The equations include a generic elastic stiffness matrix that describes the nature and configuration of the structural connections between the various components of the vehicle. This matrix satisfies the condition for perfect steering (without generating creep forces) on uniform curves and the necessary condition for dynamic stability derived in previous work. The paper shows the application of these basic conditions to a class of generic unsymmetric bogies. The analysis has as its objective the derivation of the simplest rather than the most general configuration that meets the conditions imposed. The results are related to past and current practice. It is shown that perfect steering, with stability at low speeds, can be achieved by means of passive suspension elements not employing linkages, and that it is possible to simplify existing steering arrangements.  相似文献   

2.
The general form of the equations o f motion o f multi-body articulated railway vehicles are used to establish the conditions which the elastic stiffness matrix, which describes the nature and configuration o f the suspension elements connecting the various bodies, must satisfy in order to achieve both perfect steering on circular curves and dynamic stability. The resulting criteria are then used to discuss the properties of various multi-axle configurations which are either typical of current practice or possibilities for future designs.  相似文献   

3.
SUMMARY

The general form of the equations o f motion o f multi-body articulated railway vehicles are used to establish the conditions which the elastic stiffness matrix, which describes the nature and configuration o f the suspension elements connecting the various bodies, must satisfy in order to achieve both perfect steering on circular curves and dynamic stability. The resulting criteria are then used to discuss the properties of various multi-axle configurations which are either typical of current practice or possibilities for future designs.  相似文献   

4.
Legislation limits the load that may be transferred to the roadway by the axies of a commercial vehicle and this has resulted in the development of multi axle bogies for both the tractor and trailer units of articulated vehicles and at the rear of rigid vehicles, some of these bogies contain self steering or articulation steered axles

Experience shows that the tyre wear characteristics of multi axle bogies may be unsatisfactory. The paper analyses the role of such bogies in the context of vehicle handling and shows how the lateral tyre forces vary between the axles. An hypotheses relating the forces in a steady state turn to wear is given. The analysis may also be applied to the general case of vehicle handling.  相似文献   

5.
For railway vehicles having coned wheels mounted on solid axles there is, in general, a conflict between stability of lateral deviations from the motion along the track and ability to steer round curves. However, the three-axle vehicle with zero bending stiffness and with shear elasticity between all wheelsets can satisfy the requirement of perfect steering and for a range of values of equivalent conicity possesses both static and dynamic stability. The static and dynamic stability of the most general form of symmetric three-axle vehicle is investigated, and stability criteria derived.  相似文献   

6.
SUMMARY

Legislation limits the load that may be transferred to the roadway by the axies of a commercial vehicle and this has resulted in the development of multi axle bogies for both the tractor and trailer units of articulated vehicles and at the rear of rigid vehicles, some of these bogies contain self steering or articulation steered axles

Experience shows that the tyre wear characteristics of multi axle bogies may be unsatisfactory. The paper analyses the role of such bogies in the context of vehicle handling and shows how the lateral tyre forces vary between the axles. An hypotheses relating the forces in a steady state turn to wear is given. The analysis may also be applied to the general case of vehicle handling.  相似文献   

7.
Summary The steering type of a mechanical guidance system has been used for Automated Guideway Transit (AGT) system in Japan. Recently, the single-axle bogie system has developed for AGT vehicle and applied to Yurikamome 7200 type vehicle. This paper describes dynamic characteristics of AGT vehicle with single-axle bogies. Introducing a nonlinear, 15 degree-of-freedom dynamic model, a computer simulation study on the lateral motion of the AGT vehicle with single-axle bogies are carried out. In order to show the dynamic characteristics of the single-axle bogie clearly, it is compared to that of the AGT vehicle with conventional steering system. The simulation study with actual vehicle parameters shows that single-axle bogie has suitable characteristics for AGT system. The multi-body dynamics modeler, DADS, is used to build the dynamic model of AGT vehicle with single-axle bogies and this is used to demonstrate the vehicle motion in actual guideway. Obtained results are compared to that of the field test. It is shown that the vehicle dynamic response can be obtained in realistic situation by using multibody dynamics code, that is useful for designing both vehicle and guideway.  相似文献   

8.
Dynamics of Automated Guideway Transit Vehicle with Single-axle Bogies   总被引:1,自引:0,他引:1  
Summary The steering type of a mechanical guidance system has been used for Automated Guideway Transit (AGT) system in Japan. Recently, the single-axle bogie system has developed for AGT vehicle and applied to Yurikamome 7200 type vehicle. This paper describes dynamic characteristics of AGT vehicle with single-axle bogies. Introducing a nonlinear, 15 degree-of-freedom dynamic model, a computer simulation study on the lateral motion of the AGT vehicle with single-axle bogies are carried out. In order to show the dynamic characteristics of the single-axle bogie clearly, it is compared to that of the AGT vehicle with conventional steering system. The simulation study with actual vehicle parameters shows that single-axle bogie has suitable characteristics for AGT system. The multi-body dynamics modeler, DADS, is used to build the dynamic model of AGT vehicle with single-axle bogies and this is used to demonstrate the vehicle motion in actual guideway. Obtained results are compared to that of the field test. It is shown that the vehicle dynamic response can be obtained in realistic situation by using multibody dynamics code, that is useful for designing both vehicle and guideway.  相似文献   

9.
For railway vehicles having coned wheels mounted on solid axles, there is a conflict between the stability of lateral deviations from the motion along the track and the ability to steer round curves. A general theory is developed for the two-axle vehicle in which there is a lack of symmetry, fore-and-aft, both of the interwheelset structure and of the equivalent conicities of the wheelsets. It is shown that whilst parameters can be selected which provide static and dynamic stability and perfect steering for both directions of motion, there is a lightly damped mode of oscillation for any practical configuration and the significance of this is discussed.  相似文献   

10.
极限工况下周期转向汽车侧向动力稳定性及分岔分析   总被引:1,自引:0,他引:1  
将汽车在极限工况下的转向操作建模为周期转向激励的非线性振动系统的响应,结合打靶法和Floquet理论分析了周期转向的稳定性和分岔行为.应用Poincare映射分析了不同的质心位置和不同的车速对极限工况下汽车转向频率特性的影响.结果表明,汽车周期转向时可能发生鞍结分岔和倍周期分岔,发生鞍结分岔还常伴有跳跃现象;极限工况下汽车的转向频率特性与常规工况有很大的不同,转向频率对汽车的稳定性有显著影响,必须采用非线性分析方法.  相似文献   

11.
The traction control in modern electric and diesel electric locomotives has allowed rail operators to utilise high traction adhesion levels without undue risk of damage from uncontrolled wheel spin. At the same time, some locomotive manufacturers have developed passive steering locomotive bogies to reduce wheel rail wear and further improve locomotive adhesion performance on curves. High locomotive traction loads in curving are known to cause the loss of steering performance in passive steering bogies. At present there are few publications on the curving performance of locomotive steering with linkage bogies. The most extreme traction curving cases of low speed and high adhesion for hauling locomotives have not been fully investigated, with effects of coupler forces and cant excess being generally ignored. This paper presents a simulation study for three axle bogie locomotives in pusher and pulling train positions on tight curves. The simulation study uses moderate and high traction adhesion levels of 16.6% and 37% for various rail friction conditions. Curving performance is assessed, showing forced steering bogies to have considerable advantages over self steering bogies. Likewise it is shown that self steering bogies are significantly better than yaw relaxation bogies at improving steering under traction. As the required traction adhesion approaches the rail friction coefficient, steering performance of all bogies degrades and yaw of the bogie frame relative to the track increases. Operation with excess cant and tensile coupler forces are both found to be detrimental to the wear performance of all locomotive bogies, increasing the bogie frame yaw angles. Bogie frame pitching is also found to have significant effect on steering, causing increased performance differences between bogie designs.  相似文献   

12.
不同转向模式的多轴转向车辆性能分析   总被引:1,自引:0,他引:1  
为解决重型车辆转向时的低速机动性和高速稳定性的问题,提出了多轴动态转向技术,并以三轴车辆为研究对象进行分析。首先建立多轴转向的二自由度车辆模型以及运动微分方程,为提高车辆的稳定性,以零质心侧偏角为目标,推导各轴间的转角比例系数及有关的状态空间矩阵、传递函数,使用MATLAB软件对不同转向模式下的操纵稳定性进行了稳态响应、瞬态响应以及频域响应的仿真。通过分析比较,说明采用多轴动态转向技术,车辆在转向时具有低速机动性高、高速稳定性好的特点。  相似文献   

13.
The modelling and development of a general criterion for the prediction of rollover threshold is the main purpose of this work. Vehicle dynamics models after the wheels lift-off and when the vehicle moves on the two wheels are derived and the governing equations are used to develop the rollover threshold. These models include the properties of the suspension and steering systems. In order to study the stability of motion, the steady-state solutions of the equations of motion are carried out. Based on the stability analyses, a new relation is obtained for the rollover threshold in terms of measurable response parameters. The presented criterion predicts the best time for the prevention of the vehicle rollover by applying a correcting moment. It is shown that the introduced threshold of vehicle rollover is a proper state of vehicle motion that is best for stabilising the vehicle with a low energy requirement.  相似文献   

14.
Active steering control in the form of secondary yaw control (SYC) and actuated wheelset yaw (AWY) have been in prototype development. This paper presents a new active steering bogie design, actuated yaw force steering (AY-FS), that is able to steer under high traction loads in tight curves. The AY-FS bogie design is compared with the AWY design. The steering performance AWY under high traction loads has not been previously reported. This paper examines five control methods, three for AWY and two for AY-FS bogies and assesses the traction curving and stability control performance of the alternative designs and control methods compared with each other and to passive steering bogie designs. The curving performance results showed considerable advantage in the proposed AY-FS bogies over the AWY. It was shown that control must be applied to both the yaw angle and the steering angle of the bogie to achieve the best traction steering performance which was not possible with the AWY bogies. The proposed new bogie designs of AY-FS overall give better traction curving and stability performance than the AWY designs.  相似文献   

15.
转向盘转角阶跃输入下半挂汽车列车操纵稳定性仿真分析   总被引:4,自引:0,他引:4  
基于包括任意载荷分布的非线性轮胎模型在内的半挂汽车列车整车模型,应用汽车列车动力学仿真软件Arc Sim,分析了半挂汽车列车在转向盘转角阶跃输入时的转向特性。通过在不同车速、不同结构参数等条件下的仿真计算,揭示了半挂汽车列车的转向特性与车速、结构参数之间的内在联系,给出了半挂汽车列车转向特性在这些条件下的表现特征,为半挂汽车列车操纵稳定性分析提供了参考和借鉴。  相似文献   

16.
文章依据典型的线性二自由度汽车模型结合freescale智能小车的实际转向系统建立数学模型,推导出微分方程,采用比例微分控制(PD)策略,并结合系统模型运用MATLAB进行仿真。采用比例微分控制(PD)策略对小车的转向系统的信号延时进行改进,对稳定性等方面也进行改善,达到预期的优化目的。  相似文献   

17.
In this paper, a novel direct yaw control method based on driver operation intention for stability control of a distributed drive electric vehicle is proposed. It was discovered that the vehicle loses its stability easily under an emergency steering alignment (EA) problem. An emergent control algorithm is proposed to improve vehicle stability under such a condition. A driver operation intention recognition module is developed to identify the driving conditions. When the vehicle enters into an EA condition, the module can quickly identify it and transfer the control method from normal direct yaw control to emergency control. Two control algorithms are designed. The emergency control algorithm is applied to an EA condition while the adaptive control algorithm is applied to other conditions except the EA condition. Both simulation results and real vehicle results show that: The driver module can accurately identify driving conditions based on driver operation intention. When the vehicle enters into EA condition, the emergent control algorithm can intervene quickly, and it has proven to outperform normal direct yaw control for better stabilization of vehicles.  相似文献   

18.
The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.  相似文献   

19.
The stability of four bogie configurations is considered for a range of friction coefficients and traction ratios. The basis of comparison is the vehicle with conventional solid-axle railway wheelsets mounted in bogies with relatively stiff plan-view suspension. As improved performance of the wheelset in guidance can be achieved with various forms of passive and active guidance, bogies with yaw relaxation, with conventional wheelsets and active stabilisation and with independent wheels and active guidance are considered. Stability of each of these configurations is studied using a full nonlinear solution of the equations of motion. It is shown that the stability of the passive bogie configurations is very robust in the presence of traction and braking and variations of friction and that this is also true for an actively guided bogie with independent wheels. However, for a bogie with conventional wheelsets and active stabilisation, creep saturation effects can reduce stability significantly.  相似文献   

20.
Three wheeled motorized vehicles are a major mode of public transport in many countries. These vehicles are prone to overturning even during normal turning and obstacle avoidance maneuvers. This paper presents a parametric analysis of a mathematical model of the vehicle and evolves guidelines for improving the overturning stability in terms of vehicle geometry and suspension properties.

Differential equations governing the dynamic behavior of the vehicle are derived on the basis of a six degree of freedom model. The vehicle response to variations in steering, engine power and braking inputs is then numerically simulated. The effects of vehicle geometry and elasto-damping suspension coefficients on the vehicle stability are presented. The results indicate an optimum position of the center of gravity where the vehicle is most stable. While stiffer suspensions favour stability, there exists an optimum value of suspension damping for which the minimum wheel load is a maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号