首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
一类时间滞后关联大系统的全局指数稳定性   总被引:3,自引:1,他引:3  
利用M-矩阵理论,通过构造适当的向量李雅普诺夫函数,研究一类具有时变时间滞后的线性关联大系统的全局指数稳定性.在时间滞后连续且有界的条件下,通过分析具有时间滞后的微分不等式的稳定性,得到了该类大系统全局指数稳定的一个判据.该判据利用大系统的系数矩阵以及与大系统关联的李雅普诺夫矩阵方程的解构造判定矩阵,根据判定矩阵是否为M-矩阵判定大系统的全局指数稳定性.该判据计算简便,且与时间滞后量无关,便于应用.  相似文献   

2.
为验证滑模控制用于含随机干扰的车辆跟随系统的可行性,建立了车辆跟随系统模型和相应的随机车辆动力学模型.用滑模控制法设计了随机车辆跟随系统的控制器.用向量Lyapunov函数法研究了控制系统稳定性,并得到系统指数均方稳定的充分条件.仿真中设置的随机因素为车辆的阻力.仿真结果表明,在5 s内跟随车辆的加速度和速度已接近领头车辆,车间距误差小于0.05 m.   相似文献   

3.
在没有假定激励函数有界、可微的情况下,研究包含分布时滞的动态神经网络平衡点的存在性、唯一性和全局指数稳定性.根据M-矩阵和拓扑学的有关知识,以及李雅普诺夫稳定性理论,获得该类神经网络平衡点的存在性、唯一性及其全局指数稳定的充分判据.用神经网络的权值矩阵和激励函数满足的条件构造判定矩阵.如果判定矩阵为M-矩阵,则系统存在唯一平衡点,是全局指数稳定的.  相似文献   

4.
为了提高车辆配送初始解获得的效率, 在不确定条件下, 研究了上海世博会行李跟随系统需求点的空间特性, 提出了基于空间特性的车辆调度方法, 建立了需求点的空间特性SLINK聚类分析方法和聚类分析结果评估方法。计算结果表明: 在需求点群聚状态下, 采用基于空间特性的聚类分析法的调度初始解总距离为583, 而传统SWEEP扫描法的调度初始解总距离为595, 因此, 在对车辆调度问题进行求解时, 对需求点的空间分布特性进行分析有助于不确定环境下车辆调度问题的最终求解。  相似文献   

5.
本文利用加权V函数求解线性大系统的稳定性,得到了比较好的结果;并指出了利用向量V函数造成亏损的实质。   相似文献   

6.
基于自适应非奇异终端滑模的悬浮控制策略   总被引:1,自引:0,他引:1       下载免费PDF全文
针对采用传统线性滑模控制的电磁悬浮系统存在响应速度慢以及抗干扰能力差的问题,提出了一种基于自适应非奇异终端滑模的悬浮控制方法,该方法将自适应控制引入到终端滑模控制,结合滑模控制对扰动不敏感的优点,利用自适应控制对滑模趋近律系数进行在线自适应调节,改善悬浮系统的动态性能. 首先,建立了电磁悬浮系统数学模型;然后,利用李雅普诺夫稳定理论证明了所设计控制器的稳定性;最后,进行了仿真和实验验证. 实验结果表明:自适应非奇异终端滑模对信号跟踪具有更快的响应速度和更小的稳态误差,对峰峰值为2 N的正弦或锯齿干扰力气隙波动可限定在0.2 mm以内,进行0.1 kg加减载实验时气隙波动为0.6 mm,各项性能均优于终端滑模和线性滑模.   相似文献   

7.
推广了常数周期脉冲方法对保守系统的混沌控制,将其应用到高维耦合连续映象保守系统一耦合Ф^4映象中,实现了对哈密顿系统的目标控制。通过计算相空间各混沌轨道的有限时间李雅普诺夫指数,得到有限时间收敛区,利用混沌轨道的有限时间收敛性,通过持续的常数周期脉冲扰动使混沌轨道的稳定片断构成一个周期轨道,从而实现对哈密顿系统的混沌控制。  相似文献   

8.
针对电磁悬浮列车悬浮控制器因轨道不平顺所引发的未知非线性力和传递函数不确定问题,提出一种基于模型参考自适应的自学习控制方案,控制算法中可调参数根据系统状态、误差和时间调整,使悬浮间隙稳定在恒定数值;学习率根据目标间隙误差大小动态调节,避免可调参数调节过慢,同时保证在稳定悬浮时间隙波动更小;通过李雅普诺夫稳定性判据证明了模型参考自适应控制系统的稳定性;通过MATLAB/Simulink对所提出的控制方案进行仿真. 研究结果表明:自学习模型参考自适应控制算法间隙的均方根误差为0.12,设定合适的可调参数初始值并对其限幅能够提升控制器的鲁棒性;在单悬浮架测试时,控制器获取到加速度信号,所提出算法的上升时间和调节时间分别为1.21 s和2.04 s,该方法学习率可动态调节,提升了控制器的适应能力.   相似文献   

9.
推广了常数周期脉冲方法对保守系统的混沌控制,将其应用到高维耦合连续映象保守系统—耦合Φ4映象中,实现了对哈密顿系统的目标控制。通过计算相空间各混沌轨道的有限时间李雅普诺夫指数,得到有限时间收敛区,利用混沌轨道的有限时间收敛性,通过持续的常数周期脉冲扰动使混沌轨道的稳定片断构成一个周期轨道,从而实现对哈密顿系统的混沌控制。  相似文献   

10.
基于直接横摆力矩控制方法,设计了一种前馈一反馈补偿控制的车辆稳定性控制器.其中控制器以4WS为期望的车辆模型,通过前馈补偿控制可使车辆的质心侧偏角趋于理想值,而反馈补偿控制可使车辆模型在较好地跟踪理想模型的基础上,有效抵抗外界干扰.通过前轮角阶跃输入与正弦输入仿真,就控制效果的稳定性与对前轮转角的跟随特性两方面而言,所设计的控制系统能较好地控制车辆的操纵稳定性.  相似文献   

11.
基于一类变时滞大系统全局指数稳定性的研究结果,提出了一种大系统指数收敛率的估计方法.利用此方法对该系统的指数收敛率进行了估计,得到了系统指数收敛率的估计式.该方法以大系统的系数矩阵以及与大系统关联的李雅普诺夫矩阵方程的解构造判定矩阵。利用M一矩阵理论,来确定系统的指数收敛率,计算简便,且与时间滞后量无关,便于在实践中应用.  相似文献   

12.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。  相似文献   

13.
基于车辆纵横向动力学耦合模型, 研究了自动化公路系统车辆换道纵横向耦合控制。假定换道过程中车辆横向加速度满足梯形约束, 根据期望换道轨迹计算车辆换道时的期望横摆角和横摆角速度, 依靠车载传感器获得车辆横摆角速度信息。采用有限时间滑模趋近律, 设计了车辆换道纵横向耦合变结构控制规律。基于李雅普诺夫稳定性理论, 对控制系统的稳定性进行了分析, 得到了系统渐进稳定的充分条件。仿真结果表明: 采用该控制规律, 车辆在纵向速度变化的情况下能够良好地跟踪期望换道轨迹, 跟踪误差小于0.06 m。  相似文献   

14.
为保障无人驾驶环境下特种车辆在典型Y型匝道合流区快速平稳通过,研究了全网联自动驾驶车辆(CAV)集中控制场景中考虑特种车辆优先通行的协同控制方法;通过博弈确定了控制区内合流序列排布,考虑特种CAV任务优先属性与车型特征,分别设计了与加速度关联的特种CAV车道优先属性、与时间关联的车种优先属性和与加速度变化率关联的车型稳定优先属性,并在成本函数中进行联合表征;将特种CAV参与的合流序列排布转化为最优序列集求解,应用二人合作博弈收益矩阵法确定了最优合流序列;依据排序结果,应用庞特里亚金最大值原理求解了车辆轨迹控制,在最小策略成本下求得纵向轨迹最优解析解,实现了考虑特种CAV优先通行的协同控制;应用Python开发语言在实施算例中仿真验证了考虑特种CAV优先通行的协同控制方法,并与无控制策略和先进先出策略进行油耗与通行时间对比。研究结果表明:应用协同控制方法在有效保障特种CAV优先通行的基础上,有86%的车辆在合流期间可以保证以最大速度平稳通过合流区域;相比于无控制策略和先进先出策略,在累计油耗方面分别降低了11.8%与16.1%,车队通过合流区域的总时长领先2类传统合流策略各3 s;最大限速、初始速度和控制区长度均对应存在使特种CAV快速通行的阈值,可为合流区域设计提供参考。  相似文献   

15.
基于飞行跟驰模型的纵向安全间隔计算方法   总被引:4,自引:0,他引:4  
为了精确计算飞机飞行的纵向安全间隔, 分析了纵向间隔的影响因素, 利用管制员和飞行员的反应时间统一度量人为因素对纵向安全间隔的影响, 根据反应时间建立了飞机飞行跟驰模型。通过量化反应时间对纵向安全间隔的影响, 提出了考虑反应时间的安全间隔计算方法。仿真计算结果表明: 在航路飞行阶段, 相近飞机的纵向间隔小于3·0km为纵向危险接近, 为了保证跟驰飞行安全, 纵向间隔最小应为3·6km。可见模型和方法是可行的, 能够为飞行间隔标准的制定提供理论依据。  相似文献   

16.
分析了网联自动驾驶车辆(CAV)混合交通流中各车辆类型及其跟驰模式下的车头间距,从通用性混合交通流特征层面理论推导了各车头间距模式的概率表达式,从而对混合交通流进行了数学描述;以混合交通流整体通行流率最大为目标,计算了多车道混合交通流中一个CAV专用道的设置条件以及专用道设置后CAV交通流在专用道和混合道上的最优交通流分配比例,将一个CAV专用道情形推广至多个CAV专用道动态管控的一般性情形,构建了混合交通流专用道动态管控的分析方法;应用案例分析论证了CAV专用道管控方法的有效性。研究结果表明:在交通需求为2 000 veh·h-1时,各CAV渗透率阶段均无需设置CAV专用道;在交通需求为3 000 veh·h-1时,需在CAV渗透率为0.2~0.4的阶段下考虑设置CAV专用道;在交通需求为5 000 veh·h-1时,需考虑在各CAV渗透率阶段下设置CAV专用道;提出的CAV专用道管控方法可根据交通需求和车道总数等条件定量化计算不同CAV渗透率阶段下的最优CAV专用道数量以及CAV交通流最优分配比例,且交通需求能够影响反映CAV专用道设置条件的临界CAV渗透率范围,交通需求和车道总数量可分别从交通需求属性和道路空间属性方面促进最优CAV专用道数量的提升,符合多车道场景混合交通流CAV专用道管控的特性。  相似文献   

17.
为研究含智能网联汽车(Connected and Automated Vehicle, CAV)和人工驾驶汽车(Regular Vehicle, RV)混行交通流下CAV跟驰行为的控制问题,考虑前后多车的速度、车头间距、速度差、加速差等参数,采用分子动力学定量表达不同周边车辆对主体车的影响,得到可用于描述CAV在混行交通流中的跟驰过程。稳定性分析结果表明,与全速度差模型相比,本文提出的考虑前后多车信息的CAV跟驰模型有利于提高交通流的稳定性。数值仿真与模型验证结果表明,与PATH实验室的CACC(Cooperative Adaptive Cruise Control)模型相比,本文建立的CAV跟驰模型平均速度最大误差减小了0.19 m·s-1,平均误差减小26.79%,拟合精度提高了0.91%。同时,在CAV和RV组成的混行交通流中,随着CAV比例的逐渐增加,车队的平均速度和交通流量逐渐增加。迟滞回环曲线表明,与全速度差(Full Velocity Difference, FVD)模型相比,本文提出的CAV模型控制下的交通流稳定性更强。该模型可用于同质流或CAV与...  相似文献   

18.
为确保通信延时条件下协同式自适应巡航控制(CACC)系统的弦稳定性,利用模型预测控制(MPC)和长短期记忆(LSTM)预测方法,研究CACC系统中车辆协同控制下的通信延时补偿方法;基于车辆队列四元素架构理论,构建了包括车辆动力学模型、间距策略、网络拓扑和MPC纵向控制器的系统模型,并综合考虑2范数和无穷范数弦稳定性条件,提出了CACC车辆队列混合范数弦稳定性量化指标,最终形成协同式车辆队列建模与评价体系;设计了一种利用前车加速度轨迹(PVAT)作为开环优化参考轨迹的MPC方法,即MPC-PVAT,通过综合考虑队列的跟驰、安全、通行效率和燃油消耗等性能指标,使目标函数趋于最小代价,从而得到当前时刻的最优控制量,并利用庞特里亚金最大值原理对所设计的优化问题进行快速求解;在MPC-PVAT基础上,提出一种基于长短期记忆(LSTM)网络的通信延时补偿方法,即MPC-LSTM,将跟驰车辆的传感器信息输入LSTM网络来预测其前车的运动状态,从而缓解短暂通信延时对车辆队列稳定性的影响。仿真测试结果表明:MPC-LSTM可容忍的通信延时上界大于1.5 s,比MPC-PVAT提升了0.8 s,比线性控制器提升了1.1 s;在基于实车数据测试中,当通信延时增加到1.2 s时,MPC-LSTM的弦稳定性指标相比MPC-PVAT提升了20.33%,与线性控制器相比稳定性提升了39.35%。可见,在通信延时较大的情况下,MPC-LSTM对通信延时具有很好的容忍性,从而有效地保证了CACC车辆队列的弦稳定性。  相似文献   

19.
为了精确地模拟车辆跟驰过程,应用相关分析的方法建立一系列跟驰模型,用微积分的方法解析模型.通过变量筛选.明确了影响车辆跟驰的重要因素有速度差、间距和前车速度.通过对模型的解析.确定了模型参数的合理取值范围以确保模拟的稳定.建立的跟驰模型可以模拟不同车辆之间的跟驰行为.预测跟驰车辆的运动状态,用于智能车辆控制或者用于追尾预警.如果获得了更完备的实验数据,基于相关分析建立跟驰模型的方法可以更精确地考虑到车辆运动状况、动力性能、道路条件、驾驶特性等影响因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号