首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
舰船舱室内部爆炸的数值模拟研究   总被引:4,自引:0,他引:4  
反舰武器战斗部在舰船舷侧防护结构内部爆炸将造成舱室的严重破坏,数值模拟是分析结构在爆炸载荷作用下破坏情况的有效手段之一.舱室内部爆炸的数值模拟涉及到冲击波传播、多个流场与结构的耦合、结构的变形与破坏.文章基于MSC.Dytran软件平台,实现了舱室内部爆炸的数值模拟.研究表明,在舱壁开口有利于减小舱室角隅处的汇集压力,保护舱室结构.同时,爆炸产生的二次破片对舱室结构能产生进一步毁伤效果.  相似文献   

2.
王珂 《船舶工程》2011,33(5):79-82
采用等效TNT方法计算了海洋平台复杂结构在油气爆炸冲击波作用下的动态响应,采用多欧拉-拉格朗日耦合方法对三种不同防爆墙结构进行数值模拟研究.模拟结果显示:在油气爆炸冲击波的作用下,平台舱室变形、失效后破裂,冲击波通过破口传入平台其它舱室;对海洋平台爆炸舱室的围壁采用原结构、梯形结构和半椭圆三种防爆墙结构进行数值对比研究,考虑防爆墙的能量吸收和甲板能量吸收这两个方面,半椭圆防爆墙结构具有更好的防爆效果.  相似文献   

3.
水面舰船抗水下爆炸的性能是舰船生命力的重要方面,深受各国海军重视.以某型水面舰船为研究对象,基于夹层板进行舷侧结构设计;选取典型工况,采用三舱段模型技术,使用MSC.Dytran对夹层板舷侧结构在水下爆炸冲击波载荷作用下的动态响应进行仿真计算.比较分析了流-固耦合力、结构变形、速度、加速度、吸能等重要力学性能.结果表明夹层板应用于舰船舷侧结构使得结构的变形、位移减小,结构塑性吸能增加,显著改善了结构的冲击环境.夹层板是一种防护性能优良的结构形式,吸能效率较高,还减小了冲击波压力及冲量的吸收及传递,对减小舰船其它部位结构的损伤防护起到重要作用.  相似文献   

4.
多层防护结构舱内爆炸试验   总被引:2,自引:0,他引:2  
舰船舷侧多层防护结构的主要作用是抵御反舰武器对内部结构的破坏。文章通过反舰武器战斗部模型在舰船舷侧防护结构内部爆炸的模拟试验,研究了战斗部内爆作用下防护结构的破坏模式、多层防护结构防御冲击波和高速破片的效果以及内部结构的冲击响应,对比分析了空舱和水舱在战斗部接近爆炸作用下的变形和破坏情况。通过对试验数据的分析发现在战斗部接近爆炸载荷作用下,水舱内板的动态响应出现了"二次加载"现象。  相似文献   

5.
战斗部舱内爆炸对舱室结构毁伤的实验研究   总被引:3,自引:0,他引:3  
为探讨舰船抗爆抗穿甲防护结构设计,利用导弹模拟战斗部进行了舱室内部爆炸模型试验,研究内爆条件下高速破片和爆炸冲击波对舱室结构的联合毁伤效应,分析舱内爆炸环境下舱室板架结构的典型破坏模式.结果表明:模拟战斗部内爆载荷作用下舱室结构的整体变形以冲击波破坏为主;战斗部破片对舱壁板架产生侵彻穿孔破坏,并在近爆区板架上形成了破口密集区域;单个破口对舱室整体结构破坏影响不大,而密集破口区在后续冲击波作用下会发生撕裂,形成大破口,影响舱室整体结构性能.该研究结果,可用于指导舰船防护结构的设计.  相似文献   

6.
舰船舷侧结构水下抗爆试验和机理研究   总被引:2,自引:0,他引:2  
通过对舰船舷侧结构模型进行水下接触爆炸试验的破损情况的观测分析,研究了舰船舷侧结构在水下接触爆炸载荷作用下的破坏机理,分析了舰船舷侧典型防护结构的破坏模式.利用能量原理计算了舰船舷侧各层防护结构在不同破坏模式下的吸能率,从而揭示了舰船舷侧结构的抗爆机理,为其抗爆设计提供了理论参考.  相似文献   

7.
爆炸破片穿透舰船舷侧防护水舱剩余特性研究   总被引:1,自引:0,他引:1  
为了抵御水下武器对舰船结构的毁伤,大型水面舰船在舷侧要设置多层防护结构。针对破片对防护水舱的毁伤情况以及破片穿透水舱的剩余特性问题,应用ABAQUS软件,采用耦合欧拉一拉格朗日方法,数值模拟了不同形状、不同质量、不同长细比的爆炸破片穿透舰船舷侧防护水舱,特别是背水钢板的演变过程。通过对数值试验结果的分析得到了爆炸破片穿透舷侧防护水舱剩余特性的规律。研究表明,球状破片的剩余速度要比柱状破片的剩余速度大得多,并且破片细长比也是影响破片剩余速度的重要因素。  相似文献   

8.
为了抵御水下武器对舰船结构的毁伤,大型水面舰船在舷侧要设置多层防护结构。针对破片对防护水舱的毁伤情况以及破片穿透水舱的剩余特性问题,应用ABAQUS软件,采用耦合欧拉—拉格朗日方法,数值模拟了不同形状、不同质量、不同长细比的爆炸破片穿透舰船舷侧防护水舱,特别是背水钢板的演变过程。通过对数值试验结果的分析得到了爆炸破片穿透舷侧防护水舱剩余特性的规律。研究表明,球状破片的剩余速度要比柱状破片的剩余速度大得多,并且破片细长比也是影响破片剩余速度的重要因素。  相似文献   

9.
为了研究冲击波和破片联合作用下船舶舱段的毁伤效应,首先在ANSA中建立舱段的有限元模型,设定材料模型、模拟舷侧破口、建立战斗部模型和耦合模型;之后在AUTODYN中对比分析了爆炸冲击波单独作用以及冲击波、破片联合作用2种情形下,船舶舱段的舱内爆炸载荷特性、舱室结构等效塑性应变及位移等数值结果的差异。结果表明:考虑冲击波和破片的联合作用时,冲击波压力曲线的前期趋势与冲击波单独作用下大致相同,但由于冲击波从破口发生泄漏,舱室内压力会较早达到准静态压力状态。同时,爆炸当舱的更多区域出现了大破口,毁伤主要表现为角隅大塑性变形以及边缘大面积撕裂,甲板和舷侧的最大位移和等效塑性应变也较冲击波单独作用大得多。  相似文献   

10.
舰船舷侧防护结构水下接触爆炸动响应分析研究   总被引:1,自引:0,他引:1  
舰船舷侧防护结构在接触爆炸载荷作用下的动响应问题是舰船抗爆抗冲击设计的重要组成部分。根据国外水面舰船防护结构形式,在某单层舷侧舰船模型基础上增设舷侧防护隔壁结构,并应用国际上通用的动力有限元程序ABAQUS对其进行水下接触爆炸系列数值仿真实验,考核舷侧防护结构对舰船抗爆抗冲击性能的影响。通过结果的对比分析发现,增设舷侧防护结构后较明显改善了船体外板的损伤情况,且防护隔壁仅发生了少量的塑性变形没有产生破口,从而达到了保护内部机舱等重要舱室的目的,并以防护结构双层隔舱内填充液体抗冲击性能最佳。  相似文献   

11.
空中爆炸下舰船桅杆结构变形及破裂的数值模拟   总被引:1,自引:0,他引:1  
对某舰的桅杆结构及相关甲板,用Lagrange单元进行模拟,桅杆周围、内部的空气用Euler单元进行模拟,Lagrange单元和Euler单元耦合界面采用一般耦合方法。运用动力有限元软件MSC/DYTRAN中的多欧拉-拉格朗日耦合方法,欧拉方程求解时使用具有二阶精度的Roe求解器,用MSC/PATRAN进行前后处理,模拟出了桅杆结构在空中爆炸作用下的变形及破裂。在破口处,冲击波传入桅杆内部,使内部空气压力发生变化。数值分析表明,应变率对结构非线性变形影响较大,计算中应当予以考虑。  相似文献   

12.
空中爆炸下舰船桅杆结构动态响应的数值模拟   总被引:1,自引:0,他引:1  
对某舰的桅杆结构及相关甲板,用Lagrange单元进行模拟,桅杆周围的空气用Euler单元进行模拟,Lagrange单元和Euler单元耦合界面采用一般耦合方法.运用动力有限元软件MSC/DYTRAN进行计算,欧拉方程求解时使用具有二阶精度的Roe求解器,用MSC/PATRAN进行前后处理,模拟了桅杆结构在空中爆炸下的全过程.从计算结果可以得到爆炸冲击波的传播过程,桅杆结构中各点的加速度、速度、位移、应力响应.分析爆炸冲击波的比冲量及靠近桅杆结构的冲击波峰值压力表明本文计算结果是合理的;计算中考虑了流固耦合效应,模拟出了冲击波的反射和绕流,更加接近实际情况.因此文中的研究,对桅杆抗爆设计具有一定的参考价值.  相似文献   

13.
船舶在远场水下爆炸载荷作用下动态响应的数值计算方法   总被引:29,自引:1,他引:28  
提出了一个利用MSC/DYTRAN数值模拟水面船舶在远距离水下爆炸载荷作用下动力响应的方法。用FORTRAN语言编译用户子程序,在近场水域边界处加上冲击波载荷以模拟远场爆炸效应,进而利用DYTRAN中强大的流固耦合计算功能,计算船体在水下冲击波作用下的动态响应。同时研究了边界定义和单元划分对冲击波传播的影响。该方法弥补了DYTRAN计算远场水下爆炸的某些不足,计算所得到的船体附近的自由场压力与经验公式的结果基本一致,船体的冲击响应与相关实验结果比较表明本文计算结果可信。  相似文献   

14.
舰船结构空中爆炸载荷的高精度数值计算程序   总被引:1,自引:0,他引:1  
给出了一种舰船结构空中爆炸载荷的高精度数值计算程序.该程序采用基于通量修正算法的有限差分格式编写.它在冲击波阵面处达到四阶精度且耗用计算资源较少,是一种简单高效的计算程序.因此该程序特别适用于大尺度船舶结构受空中爆炸载荷的计算.程序的可靠性和准确性通过击波管试验和空中爆炸试验数据进行了检验.最后给出了一个典型船舶结构受空中爆炸载荷的算例.  相似文献   

15.
水面舰艇舷侧防雷舱结构水下抗爆防护机理研究   总被引:9,自引:2,他引:7  
在文献[1]朱锡等人关于水面舰艇舷侧防雷舱结构模型抗爆试验研究结果的基础上,分析了水面舰艇舷侧防雷舱各层防护结构在舷侧遭受水中兵器接触爆炸时的破坏模式,从能量的角度计算了各个防护层的吸能率.提出能量流的概念,揭示了水面舰艇舷侧防雷舱的防护机理,从而为防雷舱的防护设计提供了理论基础.  相似文献   

16.
利用结构变形的吸能原理和阻抗不匹配材料界面反射冲击波特性,设计了一种新型的冲击能吸收和防护结构,用来提高舰船的抗水下爆炸生命力.这种冲击防护层可以粘贴在舰船壳体的外表面.文中使用试验和数值计算的方法检验此冲击防护层的抗冲击特性.采用水下爆炸试验的方法得到舰船模型粘贴冲击防护层前后的加速度和应变,并通过试验确定数值计算的冲击波载荷.利用ABAQUS显示动力学模块分别建立与试验对应的数值模型,计算得到相应的动态响应值.试验和数值计算的结果表明冲击防护层具有显著的冲击隔离特性,同时数值计算与试验结果具有较好的一致性.  相似文献   

17.
接触爆炸下舰船强力甲板塑性动态响应特性研究   总被引:1,自引:0,他引:1  
基于舰船强力甲板结构和接触爆炸工况设计,采用非线性有限元计算方法对在不同炸药量下、不同尺寸的纵桁和强横梁的强力甲板进行接触爆炸数值模拟。分析球形炸药接触爆炸下空气冲击波的压力分布以及对甲板的冲击过程,结果显示强力甲板结构在接触爆炸下呈现出3种破坏模式,并通过定义构件相对强度因子,提出了破坏模式的判别条件,初步揭示舰船强力甲板在接触爆炸下的塑性动态响应特性。  相似文献   

18.
基于结构遮挡的冲击波能量提出了一种新型冲击因子.为验证该冲击因子在外部爆炸问题中的适用性,使用CONWEP算法对典型三舱段模型在不同装药工况下的响应进行非线性有限元数值仿真,并采用准静态法计算受损舱段的剩余极限强度.计算结果表明新型冲击因子相比传统冲击因子更适合用于表征外部爆炸作用下结构的整体破坏.对于远场爆炸工况,强力甲板最大位移、舱段塑形应变能和剩余极限强度在新型冲击因子衡量下均显示出较高的一致性.在近场爆炸工况中,由于结构局部变形的影响,计算结果存在一定的离散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号