首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
高强混凝土在大体积混凝土中应用时会产生大量的水化热,在混凝土中心位置形成一个高温带导致内外温差较大,从而使混凝土产生裂缝,因此研究在施工期的水化热温度场具有重要意义。以江西鄱阳湖大桥为工程背景,现场测试了П型主梁浇筑过程中的大量温度数据,通过分析得到了П型梁顶板混凝土对外界气温敏感,水化热对其影响较小;梁肋大体积混凝土在施工期由于水泥水化作用,不仅会在结构内部产生较高的温度,而且容易使混凝土表面与中心产生较大的温差,导致混凝土产生裂缝。因此,施工时应采取相应的温控措施,减小混凝土的水化热。  相似文献   

2.
大体积混凝土水化热施工期温度场及应力场仿真分析   总被引:1,自引:0,他引:1  
介绍了大体积混凝土水化热的有限元分析及其控制措施,结合鄂东长江大桥南主塔承台水泥混凝土浇筑工程,通过现场试验确定了混凝土配合比设计,利用有限元模型,提出了解决施工过程中水化热的具体措施,保证了鄂东长江大桥南主塔承台的顺利浇筑。  相似文献   

3.
本文以大型桥梁结构中大体积混凝土水化热问题为背景 ,就水化热数值模拟计算中时间步长对计算精度的影响进行了研究 ,提出了简便的修正方法 ,并对修正龄期进行了分析。研究结果表明 ,文中所提出的方法有效地减小了由于时间步长增大而造成的计算误差 ,大大降低了计算工作量 ,取得了理想的效果  相似文献   

4.
丁祥文 《上海公路》2023,(3):103-106+219
为研究隧道底板一次浇筑施工过程中,结构的温度场和应力场的变化规律及结构抗裂性能,以深圳某隧道长40 m×宽16.25 m×厚1.2 m的底板为工程背景,进行分析。采用ANSYS,建立实体水化热效应温度场和应力有限元模型,并利用matlab处理温度荷载数据,结合实际浇筑方案和拆模时间,研究底板从浇筑至28 d的内部最高温度、最低温度、里表温差和拉应力变化规律。结果表明:混凝土底板在2~3 d内达到温度峰值,最高温度为52.54℃。在第28 d,混凝土里表温度基本与环境温度接近。里表温差最大为21.4℃,发生在2~3 d的时间段内。实际施工时,可采取一定的保湿通风和提高掺合料比等措施,来控制温度峰值。整个施工过程中,混凝土抗裂安全系数均大于1.15,满足规范要求。底板采取一次浇筑的施工方案切实可行。  相似文献   

5.
王军  李峰  王韶翔 《公路》2007,(11):173-177
大体积混凝土在现代的土木工程施工中已非常普遍,但常常出现裂缝和变形,严重影响了结构的整体性和耐久性。本文通过利用结构有限元分析程序MIDAS/Civil对一座待建桥梁承台进行水化热分析研究,总结了承台混凝土在水化热影响下温度的分布规律以及温度随时间的变化规律,同时提出了防止混凝土开裂的一些应对措施。  相似文献   

6.
重力式锚碇是典型的大体积混凝土结构,施工过程中的水化热应予以严格控制,避免产生温度裂缝.以郭家沱大桥锚碇为例,在施工前进行水化热分析,制定相应的大体积混凝土温控措施.经现场监测,各项指标均满足标准限值,未出现混凝土温度裂缝,证明温控措施有效,确保了锚碇质量.  相似文献   

7.
利用有限元程序对连续刚构桥梁承台大体积混凝土施工水化热进行计算,将计算结果与实测温度场进行比较分析,验证计算结果的正确性,为今后类似工程的水化热计算及温度控制提供参考。  相似文献   

8.
斜拉桥主塔承台大体积混凝土施工水化热分析   总被引:1,自引:0,他引:1  
利用有限元程序对斜拉桥主塔承台混凝土施工水化热进行计算,并与实测温度场进行了比较,进一步分析了承台混凝土施工水化热变化的一般规律。  相似文献   

9.
根据水化热有限元数值计算理论,采用有限元方法进行温度场的模拟分析。测量了某在建特大桥高强混凝土桥墩实心段的温度,并与有限元方法模拟的温度变化进行比较,说明水化热的发生、分布以及散失规律,为高强混凝土有害温度裂缝的防治提供了依据,同时也为高强混凝土桥墩施工裂缝原因分析和水化热控制提供了重要的工程案例。  相似文献   

10.
王新联  徐爱敏 《公路》2022,67(8):206-211
早期水化热是导致大吨位箱梁混凝土早期开裂的主要原因之一。以杭甬复线宁波段一期工程的40 m预制箱梁为背景,开展早期水化热试验研究。研究结果表明,40 m箱梁早期水化热温度变化总体呈“温升—高温持续—降温”的变化规律;水化热最高温度出现在端部截面右侧腹板芯部,最高温度为77.0℃,出现时间为混凝土开始浇筑后第30 h;混凝土最大温差出现在箱梁端部截面右侧腹板芯部—腹板内表层,最大温差为21.5℃,出现时间为混凝土开始浇筑后第35 h;由于箱梁端部腹板较厚,混凝土芯部热量相对不易散失,导致端部混凝土升温速率大于跨中截面;同时,外界环境对大吨位箱梁水化热温度峰值、升降温速率、内表温差有重要影响。试验结果可为大吨位箱梁施工养护和裂缝防控提供参考。  相似文献   

11.
混凝土水化热是引起箱梁产生早期裂缝的主要因素之一。本文对江市特大桥19#墩右幅0#块箱梁混凝土水化热温度场进行了现场实测,并用Midas/Civil软件建立有限元模型进行了仿真分析,计算值和实测值吻合良好。基于实测和分析结果对内外温差控制、混凝土配合比设计及早期开裂控制提出若干建议,对箱梁开裂控制工作具有指导性意义。  相似文献   

12.
混凝土箱梁的水化热温度分析   总被引:7,自引:1,他引:7  
通过对跨径为165m的南京长江二桥北汊主桥预应力混凝土连续箱梁温度测试结果的分析,阐述了箱梁混凝土早期水化热温度发展的特点,提出了防止温差过大而引起混凝土开裂的工程措施。  相似文献   

13.
结合某连续刚构桥的施工监控,对箱梁在施工阶段的水化热影响以及运营阶段的日照辐射影响进行了研究.利用ANSYS计算出:受水化热影响,箱梁最大内外温差值达到了63℃;受日照辐射影响,箱梁项板与腹板处产生应力集中,设计时应当引起重视.  相似文献   

14.
混凝土箱梁温度场有限元分析   总被引:13,自引:0,他引:13  
阮静  万水  叶见曙  程霞 《公路》2001,(9):54-58
应用大型有限元分析程序ANSYS对南京长江二桥北汊主桥0号块箱梁混凝土的浇注温度场进行了分析,并将计算结果与混凝土连续箱梁的实测温度进行了比较,结果显示用本文所建立的有限元分析模型可以精确的仿真实际混凝土温度场。  相似文献   

15.
混凝土箱梁温度场观测与分析   总被引:3,自引:1,他引:2  
为了确定适合新疆伊犁地区特点的大跨度钢筋混凝土箱形梁桥的温度梯度模式,以新疆伊犁河大桥施工为工程背景,对大跨度钢筋混凝土箱形梁桥箱梁的温度场进行现场连续观测。采用有限元法,计算和分析基于建桥地区气候特征的钢筋混凝土箱形梁桥的温度梯度模式,并与现场实测温度数据进行比较,计算值和实测值吻合较好。最后利用数理统计的方法,拟合出桥梁施工控制时刻的升温模式和降温模式温度场,并与国内外设计规范中有关温度荷载的规定进行比较,其结果与英国BS5400规范温度梯度模式和我国公路桥涵新规范温度梯度模式较为一致,从而验证了推荐的温度梯度模式的合理性。本分析研究方法及推荐的温度梯度模式对类似桥梁工程的设计和施工具有指导意义。  相似文献   

16.
混凝土箱梁温度场计算方法研究   总被引:1,自引:0,他引:1  
徐德明  周启国  陈衡治 《公路》2008,(5):96-100
混凝土箱梁桥温度场是非线性的,其分布主要取决于环境条件、物理性质、几何材料特征以及桥梁走向位置等因素。本文简要介绍了一个考虑以上因素计算箱梁表面温度分布的解析模型,在此基础上进行箱梁桥温度场的热力学有限元瞬态分析。以杭州湾跨海大桥非通航孔桥为例,计算大跨预应力混凝土箱梁结构的温度场,通过与规范的计算进行比较,得到一些关于混凝土箱型梁桥温度效应的结果,可为工程设计和管理提供必要的依据。  相似文献   

17.
李靖 《交通科技》2012,(3):28-31
为研究温度效应对大跨度混凝土结构受力的影响,结合某铁路特大桥实际工程,建立了混凝土箱梁的热-结构耦合分析三维有限元模型,分析了在温度场作用下混凝土箱梁的应力分布规律以及温度场变化对横向分析结果带来的影响.  相似文献   

18.
常山南门溪大桥为钢管混凝土提篮拱桥,拱肋施工正处于冬季,针对该桥拱肋采用集束式钢管混凝土结构,截面混凝土所占比例较大,钢管又相对薄弱的情况,采用LUSAS通用有限元软件,分析拱肋混凝土水化热,对拱肋水化热产生的温度场及温度应力进行计算。分析表明:冬季施工拱肋混凝土水化热引起的温度梯度大,温度应力明显,在施工与监控过程中应考虑其影响。  相似文献   

19.
预应力混凝土预制梁的温度影响   总被引:2,自引:1,他引:2  
许燕  杨飞 《中南公路工程》2002,27(3):48-50,54
针对预应力混凝土预制梁在存梁期内因温度变化而产生温度应力和挠度,提出了预制梁在日照和日气温变化作用下的温度应力和挠度计算公式。  相似文献   

20.
针对预应力混凝土预制梁在存梁期内因温度变化而产生温度应力和挠度,提出了预制梁在日照和日气温变化作用下的温度应力和挠度计算公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号