首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This paper presents a case study of the optimal ALINEA ramp metering system model of a corridor of the metro Atlanta freeway. Based on real-world traffic data, this study estimates the origin-destination matrix for the corridor. Using a stochastic simulation-based optimization framework that combines a micro-simulation model and a genetic algorithm-based optimization module, we determine the optimal parameter values of a combined ALINEA ramp metering system with a queue flush system that minimizes total vehicle travel time. We found that the performance of ramp metering with optimized parameters, which is very sensitive possibly because bottlenecks are correlated, outperforms the no control model with its optimized parameters in terms of reducing total travel time.  相似文献   

2.
An in-depth understanding of travel behaviour determinants, including the relationship to non-travel activities, is the foundation for modelling and policy making. National Travel Surveys (NTS) and time use surveys (TUS) are two major data sources for travel behaviour and activity participation. The aim of this paper is to systematically compare both survey types regarding travel activities and non-travel activities. The analyses are based on the German National Travel Survey and the German National Time Use Survey from 2002.The number of trips and daily travel time for mobile respondents were computed as the main travel estimates. The number of trips per person is higher in the German TUS when changes in location without a trip are included. Location changes without a trip are consecutive non-trip activities with different locations but without a trip in-between. The daily travel time is consistently higher in the German TUS. The main reason for this difference is the 10-min interval used. Differences in travel estimates between the German TUS and NTS result from several interaction effects. Activity time in NTS is comparable with TUS for subsistence activities.Our analyses confirm that both survey types have advantages and disadvantages. TUS provide reliable travel estimates. The number of trips even seems preferable to NTS if missed trips are properly identified and considered. Daily travel times are somewhat exaggerated due to the 10-min interval. The fixed time interval is the most important limitation of TUS data. The result is that trip times in TUS do not represent actual trip times very well and should be treated with caution.We can use NTS activity data for subsistence activities between the first trip and the last trip. This can potentially benefit activity-based approaches since most activities before the first trip and after the last trip are typical home-based activities which are rarely substituted by out-of-home activities.  相似文献   

3.
This study evaluates the expected benefits of using the ALINEA ramp metering algorithm as a method for real-time safety improvement on an urban freeway. The objective of this research is to use ramp metering to produce a significant decrease in the risk of crashes on the freeway while avoiding any significant adverse effects on operation. This is achieved by simulating the freeway during the congested period in micro-simulation and testing various ramp metering configurations to determine which provides the best results. Statistical measures developed for the same stretch of freeway using loop detector data are used to quantify the risk of crashes as well as the benefits in each of the alternative strategies. The study concludes that there are significant benefits in metering multiple ramps when the feedback ramp metering algorithm is implemented at multiple locations. It was found that increasing the number of metered on-ramps produces increasing safety benefits. Also, a shorter cycle length for each of the meters and a higher critical occupancy value leads to better results.  相似文献   

4.
There is considerable research on the climate effects of daily travel, including research on the spatio-temporal and socioeconomic impact factors of daily travel and associated climate change effects. However, this is less true with respect to long-distance trips. This paper uses national transport survey data from Germany to point out differences in GHG emissions related to demographic, socioeconomic and spatial characteristics for daily and long-distance travel. Daily travel and long-distance travel are investigated simultaneously and separately using Logit and OLS regressions. The results show that transport-related GHG emissions from long-distance trips and daily trips are affected by sociodemographics in largely the same direction. In contrast, spatial attributes, like municipality size or density grade of the region, show a different picture. Per capita emissions in rural and suburban areas are higher for daily trips, but lower for long-distance trips than emissions caused by urban residents. While we cannot rule out the possibility of residential self-selection, our findings challenge the idea that compact urban development may help reduce CO2 emissions once long-distance trips are taken into account.  相似文献   

5.
This paper deals with a fair ramp metering problem which takes into account average travel delay distribution among on-ramps for an expressway system comprising expressways, on-ramps and off-ramps. A novel spatial equity index is defined to measure the evenness of travel delay distribution among on-ramps within the predefined on-ramp groups. An ideal fair ramp metering problem therefore aims to find an optimal dynamic ramp metering rate solution that not only minimizes the total system delay, but also maximizes the equity indexes associated to the groups. Some of these objectives, however, contradict with each other, and their Pareto-optimality is explored. The fair ramp metering problem proposed in this paper is formulated as a multiobjective optimization model incorporating a modified cell-transmission model (MCTM) that captures dynamic traffic flow pattern with ramp metering operations. The MCTM then is embedded in the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to solve the multiobjective optimization model. Finally, the Interstate I-210 W expressway-ramp network in the United States is adopted to assess the methodology proposed in this paper.  相似文献   

6.
This study aims to determine whether ramp meters increase the capacity of active freeway bottlenecks. The traffic flow characteristics at 27 active bottlenecks in the Twin Cities have been studied for seven weeks without ramp metering and seven weeks with ramp metering. A methodology for systematically identifying active freeway bottlenecks in a metropolitan area is proposed, which relies on two occupancy threshold values and is compared to an established diagnostic method – transformed cumulative count curves. A series of hypotheses regarding the relationships between ramp metering and the capacity of active bottlenecks are developed and tested against empirical traffic data. It is found that meters increase the bottleneck capacity by postponing and sometimes eliminating bottleneck activations, accommodating higher flows during the pre-queue transition period, and increasing queue discharge flow rates after breakdown. Results also suggest that flow drops after breakdown and the percentage flow drops at various bottlenecks follow a normal distribution. The implications of these findings on the design of efficient ramp control strategies, as well as future research directions, are discussed.  相似文献   

7.
Transit development is one planning strategy that seeks to partially overcome limitations of low-density single use car oriented development styles. While many studies focus on how residential proximity to transit influences the travel behaviors of individuals, the effect of workplace proximity to transit is less understood. This paper asks, does working near a light rail transit station influence the travel behaviors of workers differently than workers living near a station? We begin by examining workers’ commute mode based on their residential and workplace proximity to transit station areas. Next, we analyze the ways in which personal travel behaviors differ between those who drive to work and those who do not. The data came from a 2009 travel behavior survey in the Denver, Colorado metropolitan area, which contains 8000 households, 16,000 individuals, and nearly 80,000 trips. We measure sustainable travel behaviors as reduced mileage, reduced number of trips, and increased use of non-car transportation. The results of this study indicate that living near a transit station area by itself does not increase the likelihood of using non-car modes for work commutes. But if the destination (work) is near a transit station area, persons are less likely to drive a car to work. People who both live and work in a transit station area are less likely to use a car and more likely to take non-car modes for both work and non-work (personal) trips. Especially for persons who work near a transit station area, the measures of personal trips and distances show a higher level of mobility for non-car commuters than car commuters – that is, more trips and more distant trips. The use of non-car modes for personal trips is most likely to occur by non-car commuters, regardless of their transit station area relationship.  相似文献   

8.
This paper studies link travel time estimation using entry/exit time stamps of trips on a steady-state transportation network. We propose two inference methods based on the likelihood principle, assuming each link associates with a random travel time. The first method considers independent and Gaussian distributed link travel times, using the additive property that trip time has a closed-form distribution as the summation of link travel times. We particularly analyze the mean estimates when the variances of trip time estimates are known with a high degree of precision and examine the uniqueness of solutions. Two cases are discussed in detail: one with known paths of all trips and the other with unknown paths of some trips. We apply the Gaussian mixture model and the Expectation–Maximization (EM) algorithm to deal with the latter. The second method splits trip time proportionally among links traversed to deal with more general link travel time distributions such as log-normal. This approach builds upon an expected log-likelihood function which naturally leads to an iterative procedure analogous to the EM algorithm for solutions. Simulation tests on a simple nine-link network and on the Sioux Falls network respectively indicate that the two methods both perform well. The second method (i.e., trip splitting approximation) generally runs faster but with larger errors of estimated standard deviations of link travel times.  相似文献   

9.
Ramp metering has emerged as an effective freeway control measure to ensure efficient freeway operations. A number of algorithms have been developed in recent years to ensure an effective use of ramp metering. As the performance of ramp metering depends on various factors (e.g. traffic volume, downstream traffic conditions, queue override policy etc), these algorithms should be evaluated under a wide range of traffic conditions to check their applicability and performance and to ensure their successful implementation. In view of the expenses of and confounding effects in field testing, simulation plays an important role in the evaluation of such algorithms. This paper presents an evaluation study of two ramp metering algorithms: ALINEA and FLOW. ALINEA is a local control algorithm and FLOW is an area wide coordinated algorithm. The purpose of the study is to use microscopic simulation to evaluate systematically how the level of traffic demand, queue spillback handling policy and downstream bottleneck conditions affect the performance of the algorithms. It is believed that these variables have complex interactions with ramp metering. MITSIM microscopic traffic simulator is used to perform the empirical study. The study consists of two stages. In the first stage, key input parameters for the algorithms were identified and calibrated. The calibrated parameters were then used for the second stage, where the performance of the algorithms were compared with respect to three traffic variables mentioned above using an orthogonal fraction of experiments. Regression analysis was used to identify the impacts of some of the interactions among experimental factors on the algorithms' performance, which is not otherwise possible with a tabular analysis. These results provide insights which may be helpful for design and calibration of more efficient ramp control algorithms.  相似文献   

10.
11.
This research provides new evidence about the relationship between travel behavior, workplace diversification, and environmental impact in the United Kingdom using data from the National Travel Survey for the period between 2002 and 2017. The path analysis approach based on SEM handles both direct and indirect effects and allows for a comprehensive study of travel behavior, trade-off effects, and work and non-work trips. The results suggest that workplace diversification is often reflected by longer average distances for work trips, which are often associated with more remote residential locations. Findings also show that for some categories, such as teleworkers and home-based workers, trade-off effects are observed between work and non-work trips, which increase CO2 emission levels.  相似文献   

12.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general.  相似文献   

13.
This paper focuses on the interrelationships between ICT, activity fragmentation and travel behaviour. The concept of fragmentation relates to how activities are spatiotemporally reorganized, by subdividing activities into smaller components that are then performed at different times and/or locations, in connection with ICT use. The association between ICT, activity fragmentation and travel relationships remains uncharted. Based on a two-day Dutch communication-activity-travel diary different associations between ICT use, paid work spatiotemporal fragmentation indicators and frequency of travel are specified and tested with Path Analysis Modelling accounting for sociodemographic and land use factors. The results demonstrate that the interrelationships between fragmentation, ICT and travel are quite complex. ICT and fragmentation apparently have a reciprocal relationship with mobile ICT use influencing the degree of spatial fragmentation whereas the usages of sedentary ICT are influenced by the degree of temporal fragmentation. Person-ICT attributes and ICT use mediate the participation in non-work activities, and can replace work and non-work travel. Fragmentation reduces work trips but at the same time restricts non-work personal travel possibilities and can reallocate time for leisure activity and travel.  相似文献   

14.
This paper presents an optimisation framework for motorway management via ramp metering and variable speed limit. We start with presenting a centralised global optimal control problem aiming to minimise the total travel delay in a motorway system. Given the centralised global optimal control solutions, we propose a set of decentralised ramp metering and speed control strategies which operate on a novel parsimonious dynamic platform without needing an underlying traffic model. The control strategies are applied to a case on UK M25 motorway. The results show that the proposed set of decentralised control is able to deliver a performance that is close to the global optimal ones with significantly less computational and implementation effort. This study provides new insights to motorway management.  相似文献   

15.
This paper illustrates a ride matching method for commuting trips based on clustering trajectories, and a modeling and simulation framework with ride-sharing behaviors to illustrate its potential impact. It proposes data mining solutions to reduce traffic demand and encourage more environment-friendly behaviors. The main contribution is a new data-driven ride-matching method, which tracks personal preferences of road choices and travel patterns to identify potential ride-sharing routes for carpool commuters. Compared with prevalent carpooling algorithms, which allow users to enter departure and destination information for on-demand trips, the proposed method focuses more on regular commuting trips. The potential effectiveness of the approach is evaluated using a traffic simulation-assignment framework with ride-sharing participation using the routes suggested by our algorithm. Two types of ride-sharing participation scenarios, with and without carpooling information, are considered. A case study with the Chicago tested is conducted to demonstrate the proposed framework’s ability to support better decision-making for carpool commuters. The results indicate that with ride-matching recommendations using shared vehicle trajectory data, carpool programs for commuters contribute to a less congested traffic state and environment-friendly travel patterns.  相似文献   

16.
The well-known feedback ramp metering algorithm ALINEA can be applied for local ramp metering or included as a key component in a coordinated ramp metering system. ALINEA uses real-time occupancy measurements from the ramp flow merging area that may be at most a few hundred meters downstream of the metered on-ramp nose. In many practical cases, however, bottlenecks with smaller capacities than the merging area may exist further downstream, which suggests using measurements from those downstream bottlenecks. Recent theoretical and simulation studies indicate that ALINEA may lead to poorly damped closed-loop behavior in this case, but PI-ALINEA, a suitable Proportional-Integral (PI) extension of ALINEA, can lead to satisfactory control performance. This paper addresses the same local ramp-metering problem in the presence of far-downstream bottlenecks, with a particular focus on the employment of PI-ALINEA to tackle three distinct cases of bottleneck that may often be encountered in practice: (1) an uphill case; (2) a lane-drop case; and (3) an un-controlled downstream on-ramp case. Extensive simulation studies are conducted on the basis of a macroscopic traffic flow model to show that ALINEA is not capable of carrying out ramp metering in these bottleneck cases, while PI-ALINEA operates satisfactorily in all cases. A field application example of PI-ALINEA is also reported with regard to a real case of far downstream bottlenecks. With its control parameters appropriately tuned beforehand, PI-ALINEA is found to be universally applicable, with little fine-tuning required for field applications.  相似文献   

17.
After the widespread deployment of Advanced Traveler Information Systems, there exists an increasing concern about their profitability. The costs of such systems are clear, but the quantification of the benefits still generates debate. This paper analyzes the value of highway travel time information systems. This is achieved by modeling the departure time selection and route choice with and without the guidance of an information system. The behavioral model supporting these choices is grounded on the expected utility theory, where drivers try to maximize the expected value of their perceived utility. The value of information is derived from the reduction of the unreliability costs as a consequence of the wiser decisions made with information. This includes the reduction of travel times, scheduling costs and stress. This modeling approach allows assessing the effects of the precision of the information system in the value of the information.Different scenarios are simulated in a generic but realistic context, using empirical data measured on a highway corridor accessing the city of Barcelona, Spain. Results show that travel time information only has a significant value in three situations: (1) when there is an important scheduled activity at the destination (e.g. morning commute trips), (2) in case of total uncertainty about the conditions of the trip (e.g. sporadic trips), and (3) when more than one route is possible. Information systems with very high precision do not produce better results. However, an acceptable level of precision is completely required, as information systems with very poor precision may even be detrimental. The paper also highlights the difference between the user value and the social value of the information. The value of the information may not benefit only the user. For instance, massive dissemination of travel time information contributes to the reduction of day-to-day travel time variance. This favors all drivers, even those without information. In these situations travel time information has the property that its social benefits exceed private benefits (i.e. information has positive externalities). Of course, drivers are only willing to cover costs equal or smaller than their private benefits, which in turn may justify subsidies for information provision.  相似文献   

18.
This paper presents a modelling and optimisation framework for deriving ramp metering and variable speed control strategies. We formulate the optimal control problems aiming to minimise the travel delay on motorways based upon a macroscopic cell transmission model of traffic. The optimal ramp metering optimisation is formulated as a linear programming (LP) while the variable speed control problem is formulated as a mixed integer LP. The optimisation models are applied to a real scenario over a section of M25 motorway in the UK. This paper also includes various analyses on the sensitivity of the optimal control solutions with respect to different network configurations and model assumptions.  相似文献   

19.
20.
Urban expressways usually experience several levels of service (LOS) because of the stop-and-go traffic flow caused by congestion. Moreover, multiple shock waves generate at different LOS interfaces. The dynamic of shock waves strongly influences the travel time reliability (TTR) of urban expressways. This study proposes a path TTR model that considers the dynamic of shock waves by using probability-based method to characterize the TTR of urban expressways with shock waves. Two model parameters are estimated, namely distribution of travel time (TT) per unit distance and travel distances in different LOS segments. Generalized extreme value distribution and generalized Pareto distribution are derived as distributions of TT per unit distance for six different LOS. Distribution parameters are estimated by using historical floating car data. Travel distances in different LOS segments are calculated based on shock wave theory. The range of TT along the path, which can help drivers arrange their trips, can be obtained from the TTR model. Finally, comparison is made among the proposed TTR model, generalized Pareto contrast model, which does not consider different LOS or existence of shock waves, and normal contrast model, which assumes TT per unit distance as normal distribution without considering shock wave. Results show that the proposed model achieves higher prediction accuracy and reduces the prediction range of TT. The conclusions can be further extended to TT prediction and assessment of measures to improve reliability of TT in a network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号