首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life cycle assessment is being accepted by the road industry to measure such key environmental impacts as the energy consumption and carbon footprint of its materials and laying processes. Previous life cycle studies have indicated that the traffic vehicles account for the majority of fuel consumption and emissions from a road. Contractors and road agencies are looking for road maintenance works that have the least overall environmental impact considering both the roadwork itself and the disrupted traffic. We review life cycle assessment studies and describe the development of a model for pavement construction and maintenance, detailing the methodology and data sources. The model is applied to an asphalt pavement rehabilitation project in the UK, and the micro-simulation program VISSIM is used to model the traffic on that road section. The simulation results are fed into a traffic emissions model and emissions from the roadwork and the traffic are compared. The additional fuel consumption and emissions by the traffic during the roadwork are significant. This indicates that traffic management at road maintenance projects should be included in the life cycle assessment analysis of such work.  相似文献   

2.
Today, driver support tools intended to increase traffic safety, provide the driver with convenient information and guidance, or save time are becoming more common. However, few systems have the primary aim of reducing the environmental effects of driving. The aim of this project was to estimate the potential for reducing fuel consumption and thus the emission of CO2 through a navigation system where optimization of route choice is based on the lowest total fuel consumption (instead of the traditional shortest time or distance), further the supplementary effect if such navigation support could take into account real-time information about traffic disturbance events from probe vehicles running in the street network. The analysis was based on a large database of real traffic driving patterns connected to the street network in the city of Lund, Sweden. Based on 15 437 cases, the fuel consumption factor for 22 street classes, at peak and off-peak hours, was estimated for three types of cars using two mechanistic emission models. Each segment in the street network was, on a digitized map, attributed an average fuel consumption for peak and off-peak hours based on its street class and traffic flow conditions. To evaluate the potential of a fuel-saving navigation system the routes of 109 real journeys longer than 5 min were extracted from the database. Using Esri’s external program ArcGIS, Arcview and the external module Network Analysis, the most fuel-economic route was extracted and compared with the original route, as well as routes extracted from criterions concerning shortest time and shortest distance. The potential for further benefit when the system employed real-time data concerning the traffic situation through 120 virtual probe vehicles running in the street network was also examined. It was found that for 46% of trips in Lund the drivers spontaneous choice of route was not the most fuel-efficient. These trips could save, on average, 8.2% fuel by using a fuel-optimized navigation system. This corresponds to a 4% fuel reduction for all journeys in Lund. Concerning the potential for real-time information from probe vehicles, it was found that the frequency of disturbed segments in Lund was very low, and thus so was the potential fuel-saving. However, a methodology is presented that structures the steps required in analyzing such a system. It is concluded that real-time traffic information has the potential for fuel-saving in more congested areas if a sufficiently large proportion of the disturbance events can be identified and reported in real-time.  相似文献   

3.
Distinguishing between traffic generated exclusively from the expansion of the road network (induced demand) and that resulting from other demand factors is of crucial importance to properly designed transport policies. This paper analyzes and quantifies the induced demand for road transport for Spain’s main regions from 1998 to 2006, years that saw mobility in Spain attain its highest growth rate. The lack of research in this area involving Spain and the key role played by the sector, given its high level of energy consumption and the negative externalities associated with it (accidents, noise, traffic congestion, emissions, etc.), endow greater relevance to this type of research. Based on a Dynamic Panel Data (DPD) reduced-form model, we apply alternative approaches (fixed and random effects and GMM-based methods) for measuring the induced demand. The results obtained provide evidence for the existence of an induced demand for transport in Spain, though said results vary depending on the estimating method employed.  相似文献   

4.
This paper presents an integrated simulator “CUIntegration” to evaluate routing strategies based on energy and/or traffic measures of effectiveness for any Alternative Fuel Vehicles (AFVs). The CUIntegration can integrate vehicle models of conventional vehicles as well as AFVs developed with MATLAB-Simulink, and a roadway network model developed with traffic microscopic simulation software VISSIM. The architecture of this simulator is discussed in this paper along with a case study in which the simulator was utilized for evaluating a routing strategy for Plug-in Hybrid Electric Vehicles (PHEVs) and Electric Vehicles (EVs). The authors developed a route optimization algorithm to guide an AFV based on that AFV driver’s choice, which included; finding a route with minimum (1) travel time, (2) energy consumption or (3) a combination of both. The Application Programming Interface (API) was developed using Visual Basic to simulate the vehicle models/algorithms developed in MATLAB and direct vehicles in a roadway network model developed in VISSIM accordingly. The case study included a section of Interstate 83 in Baltimore, Maryland, which was modeled, calibrated and validated. The authors considered a worst-case scenario with an incident on the main route blocking all lanes for 30 min. The PHEVs and EVs were represented by integrating the MATLAB-Simulink vehicle models with the traffic simulator. The CUIntegration successfully combined vehicle models with a roadway traffic network model to support a routing strategy for PHEVs and EVs. Simulation experiments with CUIntegration revealed that routing of PHEVs resulted in cost savings of about 29% when optimized for the energy consumption, and for the same optimization objective, routing of EVs resulted in about 64% savings.  相似文献   

5.
随着城市化的发展,珠三角城市交通能源消耗和碳排放迅速增长。为了探讨珠三角城市低碳交通的发展方向,本文采用LEAP模型,以珠三角的佛山市为例,模拟了不同情景下交通总量、陆运和水运的能源消耗、能源结构和碳排放由2011至2030年的变化情况;并据此提出了珠三角城市低碳交通发展对策。结果表明:水运在交通运输中所占份额逐渐被陆运替代,将形成陆运为主、水运为辅的交通模式;在交通总量、陆运和水运等的交通能耗及碳排放方面,低碳情景均小于基准情景,且呈水运小于陆运的态势;而清洁能源使用比重的增加则有利于交通领域的低碳发展。珠三角城市低碳交通发展需关注陆运交通,提高清洁能源在陆运中的使用比重,优化陆运与水运的交通布局,提高运输及能源利用效率。  相似文献   

6.
Complexity in transport networks evokes the need for instant response to the changing dynamics and uncertainties in the upstream operations, where multiple modes of transport are often available, but rarely used in conjunction. This paper proposes a model for strategic transport planning involving a network wide intermodal transport system. The system determines the spatio-temporal states of road based freight networks (unimodal) and future traffic flow in definite time intervals. This information is processed to devise efficient scheduling plans by coordinating and connecting existing rail transport schedules to road based freight systems (intermodal). The traffic flow estimation is performed by kernel based support vector mechanisms while mixed integer programming (MIP) is used to optimize schedules for intermodal transport network by considering various costs and additional capacity constraints. The model has been successfully applied to an existing Fast Moving Consumer Goods (FMCG) distribution network in India with encouraging results.  相似文献   

7.
Information and communication technologies used for on-board vehicle monitoring have been adopted as an additional tool to characterize mobility flows. Furthermore, traffic volumes are traditionally measured to understand cities traffic dynamics. This paper presents an innovative methodology that uses an extensive and complementary real-world dataset to make a scenario-based analysis allowing assessing energy consumption impacts of shifting traffic from peak to off-peak hours. In the specific case of the city of Lisbon, a sample of 40 drivers was monitored for a period of six months. The obtained data allowed testing the impacts of increasing the percentage of traffic shifting from peak to off-peak hours in energy consumption. Both average speed and energy consumption variations were quantified for each of the tested percentages, allowing concluding that for traffic shifts of up to 30% a positive impact in consumption can be observed. In terms of potential gains associated to shifting traffic from peak hours, reductions in energy consumption from 0.1% to 0.4% can be obtained for traffic volumes shifts from 5 to 30%. Overall, the maximum reduction in energy consumption is achieved for a 20% traffic shift. Average speed variation follows the same trend as energy consumption, but in the opposite direction, i.e. instead of decreasing, average speed increases. For the best case scenario, considering only the sections of roads with traffic sensors, a 1.4% reduction in trip time may be achieved, as well as savings of up to 6 l of fuel and 14.5 kg of avoided CO2 emissions per day.  相似文献   

8.
This paper gives a review of the historical and geographical preconditions as well as of the population and economic development which led to the unique and complex transport systems of Tokyo. Tokyo Metropolis, one of the most populous cities in the world, is located in the National Capital Region of Japan where 32 million people are living today. The special transport problems deriving from this high population density are described in context with the development of employment, transport infrastructure and motorization. Due consideration is given to the influence exerted by the structure of the whole region on the overall traffic behaviour.

Several transport phenomena and problem solutions which are typical of the traffic systems in Tokyo are described, such as the change of rush hour congestion rates depending on subway extension, modal split for different trip purposes in the inner urban area, or information via local radio broadcasts with very short range of transmission.

The main current transport issues are discussed. Though the transport networks in Tokyo are some of the most developed in the world, there is still heavy congestion in rush hours. The basic policy therefore is the further strengthening and improvement of the public transport network.  相似文献   

9.
This paper deals with developing a methodology for estimating the resilience, friability, and costs of an air transport network affected by a large-scale disruptive event. The network consists of airports and airspace/air routes between them where airlines operate their flights. Resilience is considered as the ability of the network to neutralize the impacts of disruptive event(s). Friability implies reducing the network’s existing resilience due to removing particular nodes/airports and/or links/air routes, and consequently cancelling the affected airline flights. The costs imply additional expenses imposed on airports, airlines, and air passengers as the potentially most affected actors/stakeholders due to mitigating actions such as delaying, cancelling and rerouting particular affected flights. These actions aim at maintaining both the network’s resilience and safety at the acceptable level under given conditions.Large scale disruptive events, which can compromise the resilience and friability of a given air transport network, include bad weather, failures of particular (crucial) network components, the industrial actions of the air transport staff, natural disasters, terrorist threats/attacks and traffic incidents/accidents.The methodology is applied to the selected real-life case under given conditions. In addition, this methodology could be used for pre-selecting the location of airline hub airport(s), assessing the resilience of planned airline schedules and the prospective consequences, and designing mitigating measures before, during, and in the aftermath of a disruptive event. As such, it could, with slight modifications, be applied to transport networks operated by other transport modes.  相似文献   

10.
This paper deals with developing a methodology for estimating the resilience, friability, and costs of an air transport network affected by a large-scale disruptive event. The network consists of airports and airspace/air routes between them where airlines operate their flights. Resilience is considered as the ability of the network to neutralize the impacts of disruptive event(s). Friability implies reducing the network’s existing resilience due to removing particular nodes/airports and/or links/air routes, and consequently cancelling the affected airline flights. The costs imply additional expenses imposed on airports, airlines, and air passengers as the potentially most affected actors/stakeholders due to mitigating actions such as delaying, cancelling and rerouting particular affected flights. These actions aim at maintaining both the network’s resilience and safety at the acceptable level under given conditions.Large scale disruptive events, which can compromise the resilience and friability of a given air transport network, include bad weather, failures of particular (crucial) network components, the industrial actions of the air transport staff, natural disasters, terrorist threats/attacks and traffic incidents/accidents.The methodology is applied to the selected real-life case under given conditions. In addition, this methodology could be used for pre-selecting the location of airline hub airport(s), assessing the resilience of planned airline schedules and the prospective consequences, and designing mitigating measures before, during, and in the aftermath of a disruptive event. As such, it could, with slight modifications, be applied to transport networks operated by other transport modes.  相似文献   

11.
为获得城市内不同交通方式的单位能耗水平,利用交通运输能耗统计监测平台抽样统计相关数据,设计算法分析单位生产任务能耗水平。在分析城市交通方式能耗统计障碍基础上,设计抽样方案、划分分类方法;设计数据分析算法分析已获数据,利用实验对统计数据进行修正,获得私家车、出租车、公交车等交通方式单位生产任务能耗水平。结果表明,由于道路客货运生产和管理现状,基于多源能耗影响因素的统计难以实现,导致生产能耗水平没有基准。依据行业分类方法,结合前期数据调研下的当量换算,可以确定可信度较高的单位生产能耗阈限,为行业发展提供依据。  相似文献   

12.
This paper summarizes the research in a project entitled “The Models for Optimizing Transportation Network and Modal Split in China”. The research background, procedure, various mathematical models used in traffic demands forecasting, modal split and network design are presented with the key results. The systematic optimization approach adopted in this paper for integrated planning of transport network and the rational modal split formulation is firstly proposed in China. Finally, further discussion on the difficulties of using transport modeling techniques in Chinese conditions is given.  相似文献   

13.
Traffic forecasts provide essential input for the appraisal of transport investment projects. However, according to recent empirical evidence, long-term predictions are subject to high levels of uncertainty. This article quantifies uncertainty in traffic forecasts for the tolled motorway network in Spain. Uncertainty is quantified in the form of a confidence interval for the traffic forecast that includes both model uncertainty and input uncertainty. We apply a stochastic simulation process based on bootstrapping techniques. Furthermore, the article proposes a new methodology to account for capacity constraints in long-term traffic forecasts. Specifically, we suggest a dynamic model in which the speed of adjustment is related to the ratio between the actual traffic flow and the maximum capacity of the motorway. As an illustrative example, this methodology is applied to a specific public policy that consists of suppressing the toll on a certain motorway section before the concession expires.  相似文献   

14.
The main obstacles to boosting the bicycle as a mode of transport are safety concerns due to interactions with motorized traffic. One option is to separate cyclists from motorists through exclusive bicycle priority lanes. This practice is easily implemented in uncongested traffic. Enforcing bicycle lanes on congested roads may degenerate the network, making the idea very hard to sell both to the public and the traffic authorities. Inspired by Braess Paradox, we take an unorthodox approach to seeking latent misutilized capacity in the congested networks to be dedicated to exclusive bicycle lanes. The aim of this study is to tailor an efficient and practical method to large size urban networks. Hence, this paper appeals to policy makers in their quest to scientifically convince stakeholder that bicycle is not a secondary mode, rather, it can be greatly accommodated along with other modes even in the heart of the congested cities. In conjunction with the bicycle lane priority, other policy measures such as shared bicycle scheme, electric-bike, integration of public transport and bicycle are also discussed in this article. As for the mathematical methodology, we articulated it as a discrete bilevel mathematical programing. In order to handle the real networks, we developed a phased methodology based on Branch-and-Bound (as a solution algorithm), structured in a less intensive RAM manner. The methodology was tested on real size network of city of Winnipeg, Canada, for which the total of 30 road segments – equivalent to 2.77 km bicycle lanes – in the CBD were found.  相似文献   

15.
This study investigates the energy consumption impact of route selection on battery electric vehicles (BEVs) using empirical second-by-second Global Positioning System (GPS) commute data and traffic micro-simulation data. Drivers typically choose routes that reduce travel time and therefore travel cost. However, BEVs’ limited driving range makes energy efficient route selection of particular concern to BEV drivers. In addition, BEVs’ regenerative braking systems allow for the recovery of energy while braking, which is affected by route choices. State-of-the-art BEV energy consumption models consider a simplified constant regenerative braking energy efficiency or average speed dependent regenerative braking factors. To overcome these limitations, this study adopted a microscopic BEV energy consumption model, which captures the effect of transient behavior on BEV energy consumption and recovery while braking in a congested network. The study found that BEVs and conventional internal combustion engine vehicles (ICEVs) had different fuel/energy-optimized traffic assignments, suggesting that different routings be recommended for electric vehicles. For the specific case study, simulation results indicate that a faster route could actually increase BEV energy consumption, and that significant energy savings were observed when BEVs utilized a longer travel time route because energy is regenerated. Finally, the study found that regenerated energy was greatly affected by facility types and congestion levels and also BEVs’ energy efficiency could be significantly influenced by regenerated energy.  相似文献   

16.
This study presents the Energy Based Micro-trip (EBMT) method, which is a new method to construct driving cycles that represent local driving patterns and reproduce the real energy consumption and tailpipe emissions from vehicles in a given region. It uses data of specific energy consumption, speed, and percentage of idling time as criteria of acceptable representativeness. To study the performance of the EBMT, we used a database of speed, fuel consumption, and tailpipe emissions (CO2, CO, and NOx), which was obtained monitoring at 1 Hz, the operation of 15 heavy-duty vehicles when they operated within different traffic conditions, during eight months. The speed vs. time data contained in this database defined the local driving pattern, which was described by 19 characteristic parameters (CPs). Using this database, we ran the EBMT and described the resulting driving cycle by 19 characteristics parameters (CPs*). The relative differences between CPs and CPs* quantified how close the obtained driving cycle represented the driving pattern. To observe tendencies of our results, we repeated the process 1000 times and reported the average relative difference (ARD) and the interquartile range (IQR) of those differences for each CP.. We repeated the process for the case of a traditional Micro-trip method and compared to previous results. The driving cycles constructed by the EBMT method showed the lowest values of ARDs and IQRs, meaning that it produces driving cycles with the highest representativeness of the driving patterns, and the best reproduction of energy consumption, and tailpipe emissions.  相似文献   

17.
A set of indicators are proposed to determine the effect of traffic-calming devices on the environment and economy. They are based on vehicular emissions and energy consumption and are used to evaluate the viability and positioning of traffic-calming devices. First, a time window is defined on which the influence of a traffic-calming device can be determined providing a convenient frame of reference. Second, a concept of local cruising conditions is defined in order to have a basis of comparison between cases “with” and “without” traffic calming devices. The emissions considered were: HC, NOx, CO, PM10, and CO2. From the latter fuel consumption was estimated. Valuation of speed bumps on a secondary road in Mexico City was obtained as an example application of the proposed methodology.  相似文献   

18.
The optimization of traffic signalization in urban areas is formulated as a problem of finding the cycle length, the green times and the offset of traffic signals that minimize an objective function of performance indices. Typical approaches to this optimization problem include the maximization of traffic throughput or the minimization of vehicles’ delays, number of stops, fuel consumption, etc. Dynamic Traffic Assignment (DTA) models are widely used for online and offline applications for efficient deployment of traffic control strategies and the evaluation of traffic management schemes and policies. We propose an optimization method for combining dynamic traffic assignment and network control by minimizing the risk of potential loss induced to travelers by exceeding their budgeted travel time as a result of deployed traffic signal settings, using the Conditional Value-at-Risk model. The proposed methodology can be easily implemented by researchers or practitioners to evaluate their alternative strategies and aid them to choose the alternative with less potential risk. The traffic signal optimization procedure is implemented in TRANSYT-7F and the dynamic propagation and route choice of vehicles is simulated with a mesoscopic dynamic traffic assignment tool (DTALite) with fixed temporal demand and network characteristics. The proposed approach is applied to a reference test network used by many researchers for verification purposes. Numerical experiments provide evidence of the advantages of this optimization method with respect to conventional optimization techniques. The overall benefit to the performance of the network is evaluated with a Conditional Value-at-Risk Analysis where the optimal solution is the one presenting the least risk for ‘guaranteed’ total travel times.  相似文献   

19.
Abstract

Traditional transport infrastructure assessment methodologies rarely include the full range of strategic benefits for the transportation system. One of these benefits is the contribution to cross‐border integration, critical for the European integration process. However, this is a key issue in strategic planning and decision‐making processes, as its inclusion may increase the probability of large‐scale transport infrastructure projects being funded. This paper presents a methodology for the measurement of the contribution of transport infrastructure plans to European integration. The methodology is based on the measurement of the improvement in network efficiency in cross‐border regions of neighbouring countries, via accessibility calculations in a Geographical Information System support. The methodology was tested by applying it to the ambitious road and rail network extensions included in the Spanish Strategic Transport and Infrastructure Plan (PEIT) 2005–2020. The results show significant and important network efficiency improvements of the PEIT outside the Spanish border. For the road mode, while the Spanish average accessibility improvement accounts for 2.6%, average improvements in cross‐border regions of France and Portugal are of 1.8%. And for the rail mode, the corresponding Spanish value is 34.5%, whereas in neighbouring regions it accounts for 20.2%. These results stress the significant importance of this strategic benefit and the consequent need for its inclusion in strategic planning processes. Finally, the paper identifies the potential of the methodology when applied at different administrative levels, such as the local or state levels.  相似文献   

20.
A high level objective for many international governments and local operators is that highways should be managed in a way that is sustainable in terms of a Low Carbon Energy future. Recent initiatives such as the Strategic Transport Technology Plan and the policy and legal framework promoted by the European Commissions’ Intelligent Transport System (ITS) Directive and ITS Action Plan may assist with this objective. However, many levels of complexity are inherent within the (ITS) schemes that are now part of highway management, due to the linkage of various technological components to complex systems and services. Maintaining efficient, sustainable co-operative performance is therefore a major task, with inconsistencies between product suppliers, network managers and operators. As a result, it is of considerable interest to the highway operators and high level policy makers to be able to assess the performance of individual ITS schemes and furthermore, to be able to compare performance between ITS schemes. In this paper, an illustration is provided of a methodology that can be used to assess the performance of ITS schemes according to a set of sustainability criteria. A case study is introduced which compares the performance of anticipated Active Traffic Management (ATM) schemes for what the road network operator (Highways England) perceive to be the four most congested highways in England (in terms of annual average daily traffic flows). Appropriate action can then be taken to improve the energy and sustainable management of Information Communication Technology (ICT) and transport systems for the benefit of a smarter, sustainable and efficient future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号