首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Solving the multi‐objective network design problem (MONDP) resorts to a Pareto optimal set. This set can provide additional information like trade‐offs between objectives for the decision making process, which is not available if the compensation principle would be chosen in advance. However, the Pareto optimal set of solutions can become large, especially if the objectives are mainly opposed. As a consequence, the Pareto optimal set may become difficult to analyze and to comprehend. In this case, pruning and ranking becomes attractive to reduce the Pareto optimal set and to rank the solutions to assist the decision maker. Because the method used, may influence the eventual decisions taken, it is important to choose a method that corresponds best with the underlying decision process and is in accordance with the qualities of the data used. We provided a review of some methods to prune and rank the Pareto optimal set to illustrate the advantages and disadvantages of these methods. The methods are applied using the outcome of solving the dynamic MONDP in which minimizing externalities of traffic are the objectives, and dynamic traffic management measures are the decision variables. For this, we solved the dynamic MONDP for a realistic network of the city Almelo in the Netherlands using the non‐dominated sorting genetic algorithm II. For ranking, we propose to use a fuzzy outranking method that can take uncertainties regarding the data quality and the perception of decision makers into account; and for pruning, a method that explicitly reckons with significant trade‐offs has been identified as the more suitable method to assist the decision making process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a multi‐objective optimization model and its solution algorithm for optimization of pedestrian phase patterns, including the exclusive pedestrian phase (EPP) and the conventional two‐way crossing (TWC) at an intersection. The proposed model will determine the optimal pedestrian phase pattern and the corresponding signal timings at an intersection to best accommodate both vehicular traffic and pedestrian movements. The proposed model is unique with respect to the following three critical features: (1) proposing an unbiased performance index for comparison of EPP and TWC by explicitly modeling the pedestrian delay under the control of TWC and EPP; (2) developing a multi‐objective model to maximize the utilization of the available green time by vehicular traffic and pedestrian under both EPP or TWC; and (3) designing a genetic algorithm based heuristic algorithm to solve the model. Case study and sensitivity analysis results have shown the promising property of the proposed model to assist traffic practitioners, researchers, and authorities in properly selecting pedestrian phase patterns at signalized intersections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The available highway alignment optimization algorithms use the total cost as the objective function. This is a single objective optimization process. In this process, travel‐time, vehicle operation accident earthwork land acquisition and pavement construction costs are the basic components of the total cost. This single objective highway alignment optimization process has limited capability in handling the cost components separately. Moreover, this process cannot yield a set of alternative solutions from a single run. This paper presents a multi‐objective approach to overcome these shortcomings. Some of the cost components of highway alignments are conflicting in nature. Minimizing some of them will yield a straighter alignment; whereas, minimizing others would make the alignment circuitous. Therefore, the goal of the multiobjective optimization approach is to handle the trade‐off amongst the highway alignment design objectives and present a set of near optimal solutions. The highway alignment objectives, i.e., cost functions, are not continuous in nature. Hence, a special genetic algorithm based multi‐objective optimization algorithm is suggested The proposed methodology is demonstrated via a case study at the end.  相似文献   

4.
A fleet sizing problem (FSP) in a road freight transportation company with heterogeneous fleet and its own technical back‐up facilities is considered in the paper. The mathematical model of the decision problem is formulated in terms of multiple objective mathematical programming based on queuing theory. Technical and economical criteria as well as interests of different stakeholders are taken into account in the problem formulation. The solution procedure is composed of two steps. In the first one a sample of Pareto‐optimal solutions is generated by an original program called MEGROS. In the second step this set is reviewed and evaluated, according to the Decision Maker's (DM's) model of preferences. The evaluation of solutions is carried out with an application of an interactive multiple criteria analysis method, called Light Beam Search (LBS). Finally, the DM selects the most desirable, compromise solution.  相似文献   

5.
6.
This paper investigates public transit service (fare and frequency) operation strategies in a bi‐modal network with assumption of indifference thresholds‐based travelers' mode choice behavior. Under such behavior, users would switch to a new mode only if its utility is larger than the utility of current mode plus a threshold. The concept of indifference thresholds‐based bi‐modal equilibrium (ITBE) and the properties of the ITBE solution are explicitly proposed. Considering transit operator's different economic objectives (profit‐maximizing, no‐deficit and total system cost‐minimizing), the effect of indifference thresholds on transit fare and frequency schemes is studied. Some numerical experiments are accompanied to verify the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Flex‐route transit brings together the low cost operability of fixed‐route transit with the flexibility of demand responsive transit, and in recent years, it has become the most popular type of flexible transit service. In this paper, a methodology is proposed to help planners make better decisions regarding the choice between a conventional fixed‐route and a flex‐route policy for a specific transit system with a varying passenger demand. A service quality function is developed to measure the performance of transit systems, and analytical modeling and simulations are used to reproduce transit operation under the two policies. To be closer to reality, two criteria are proposed depending on the processing of rejected requests in the assessment of the service quality function for flex‐route services. In various scenarios, critical demand densities, which represent the switching points between the two competing policies, are derived in a real‐world transit service according to the two criteria. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Deviated fixed route transit (DFRT) service connecting rural and urban areas is a growing transportation mode in the USA. Little research has been done to develop frameworks for route design. A methodology to explore the most cost‐effective DFRT route is presented in this paper. The inputs include potential DFRT demand distribution and a road network. A heuristic is used to build possible routes by starting at urban cores and extending in all network directions in certain length increments. All the DFRT routes falling in the length range desired by the users are selected. The cost effectiveness of those routes, defined by operating cost per passenger trip, is compared. The most cost‐effective route is selected and presented in a GIS map. A case study illustrates the methodology in several Tennessee metropolitan regions. The most cost‐effective route length is case specific; some routes (e.g. those out of our Nashville case) are most cost effective when short, while others (e.g. those out of Memphis) are most cost effective when long. Government agencies could use the method to identify routes with the lowest operating cost per passenger given a route length or an operating cost budget. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes a new heuristic algorithm for the Capacitated Location-Routing Problem (CLRP), called Granular Variable Tabu Neighborhood Search (GVTNS). This heuristic includes a Granular Tabu Search within a Variable Neighborhood Search algorithm. The proposed algorithm is experimentally compared on the benchmark instances from the literature with several of the most effective heuristics proposed for the solution of the CLRP, by taking into account the CPU time and the quality of the solutions obtained. The computational results show that GVTNS is able to obtain good average solutions in short CPU times, and to improve five best known solutions from the literature. The main contribution of this paper is to show a successful new heuristic for the CLRP, combining two known heuristic approaches to improve the global performance of the proposed algorithm for what concerns both the quality of the solutions and the computing times required to find them.  相似文献   

10.
Parcel express service in many countries assumes door‐to‐door delivery of parcels and small packages in the fastest possible way. Delivery companies usually organize hub delivery networks, as flows between hubs are characterized by the economy of scale effect. At hubs, parcels are exchanged across vans, trucks, and planes. To organize parcel delivery in a specific region, the parcel delivery company must make appropriate decisions about the total number of parcel delivery hubs, their locations, and the allocation of demand for facilities' services to facilities. These issues are modeled in this paper as a multi‐objective problem. The model developed is based on compromise programming and genetic algorithms. We also demonstrate in the paper an interactive manner in which a defined problem can be solved. The proposed model could be implemented in large‐scale networks. The paper also shows a case study of parcel delivery service in Serbia. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
We consider a hub and spoke location problem (HSLP) with multiple scenarios. The HSLP consists of four subproblems: hub location, spoke location, spoke allocation, and customer allocation Under multiple scenarios, we aim to provide a set of well‐distributed solutions, close to the true Pareto optimal solutions, for decision makers. We present a novel multi‐objective symbiotic evolutionary algorithm to solve the HSLP under multiple scenarios. The algorithm is modeled as a two‐leveled structure, which we call the two‐leveled multi‐objective symbiotic evolutionary algorithm (TMSEA). In TMSEA, two main processes imitating symbiotic evolution and endosymbiotic evolution are introduced to promote the diversity and convergence of solutions. The evolutionary components suitable for each sub‐problem are defined. TMSEA is tested on a variety of test‐bed problems and compared with existing multi‐objective evolutionary algorithms. The experimental results show that TMSEA is promising in solution convergence and diversity.  相似文献   

12.
The level of service on public transit routes is very much affected by the frequency and vehicle capacity. The combined values of these variables contribute to the costs associated with route operations as well as the costs associated with passenger comfort, such as waiting and overcrowding. The new approach to the problem that we introduce combines both passenger and operator costs within a generalized newsvendor model. From the passenger perspective, waiting and overcrowding costs are used; from the operator’s perspective, the costs are related to vehicle size, empty seats, and lost sales. Maximal passenger average waiting time as well as maximal vehicle capacity are considered as constraints that are imposed by the regulator to assure a minimal public transit service level or in order to comply with other regulatory considerations. The advantages of the newsvendor model are that (a) costs are treated as shortages (overcrowding) and surpluses (empty seats); (b) the model presents simultaneous optimal results for both frequency and vehicle size; (c) an efficient and fast algorithm is developed; and (d) the model assumes stochastic demand, and is not restricted to a specific distribution. We demonstrate the usefulness of the model through a case study and sensitivity analysis.  相似文献   

13.
Bus rapid transit system is designed to provide high‐quality and cost‐efficient passenger transportation services. In order to achieve this design objective, effective scheduling strategies are required. This research aims at improving the operation efficiency and service quality of a BRT system through integrated optimization of its service headways and stop‐skipping strategy. Based on cost analysis for both passengers and operation agencies, an optimization model is established. A genetic algorithms based algorithm and an application‐oriented solution method are developed. Beijing BRT Line 2 has been chosen as a case study, and the effectiveness of the optimal headways with stop‐skipping services under different demand levels has been analyzed. The results has shown that, at a certain demand level, the proposed operating strategy can be most advantageous for passengers with an accepted increase of operating costs, under which the optimum headway is between 3.5 and 5.5 min for stop‐skipping services during the morning peak hour depending on the demand with the provision of stop‐skipping services. The effectiveness of the optimal headways with stop‐skipping services is compared with those of existing headways and optimal headways without stop‐skipping services. The results show that operating strategies under the optimal headways with stop‐skipping services outperforms the other two operating strategies with respect to total costs and in‐vehicle time for passengers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a procedure for the estimation of origin‐destination (O‐D) matrices for a multimodal public transit network. The system consists of a number of favored public transit modes that are obtained from a modal split process in a traditional four‐step transportation model. The demand of each favored mode is assigned to the multimodal network, which is comprised of a set of connected links of different public transit modes. An entropy maximization procedure is proposed to simultaneously estimate the O‐D demand matrices of all favored modes, which are consistent with target data sets such as the boarding counts and line segment flows that are observed directly in the network. A case study of the Hong Kong multimodal transit network is used to demonstrate the effectiveness of the proposed methodology.  相似文献   

16.
We consider a city region with several facilities that are competing for customers of different classes. Within the city region, the road network is dense, and can be represented as a continuum. Customers are continuously distributed over space, and they choose a facility by considering both the transportation cost and market externalities. More importantly, the model takes into account the different transportation cost functions and market externalities to which different customer classes are subjected. A logit‐type distribution of demand is specified to model the decision‐making process of users' facility choice. We develop a sequential optimization approach to decompose the complex multi‐class and multi‐facility problem into a series of smaller single‐class and single‐facility sub‐problems. An efficient solution algorithm is then proposed to solve the resultant problem. A numerical example is given to demonstrate the effectiveness and potential applicability of the proposed methodology.  相似文献   

17.
《运输规划与技术》2012,35(8):777-824
ABSTRACT

In this paper, a fuzzy-stochastic optimization model is developed for an intermodal fleet management system of a large international transportation company. The proposed model integrates various strategic, tactical and operational level decisions simultaneously. Since real-life fleet planning problems may involve different types of uncertainty jointly such as randomness and fuzziness, a hybrid chance-constrained programming and fuzzy interactive resolution-based approach is employed. Therefore, stochastic import/export freight demand and fuzzy transit times, truck/trailer availabilities, the transport capacity of Ro-Ro vessels, bounds on block train services, etc. can also be taken into account concurrently. In addition to minimize overall transportation costs, optimization of total transit times and CO2 emission values are also incorporated in order to provide sustainable fleet plans by maximizing customer satisfaction and environmental considerations. Computational results show that effective and efficient fleet plans can be produced by making use of the proposed optimization model.  相似文献   

18.
This paper presents a new data mining method that integrates adaptive B‐spline regression and traffic flow theory to develop multi‐regime traffic stream models (TSMs). Parameter estimation is implemented adaptively and optimally through a constrained bi‐level programming method. The slave programming determines positions of knots and coefficients of the B‐spline by minimizing the error of B‐spline regression. The master programming model determines the number of knots through a regularized function, which balances model accuracy and model complexity. This bi‐level programming method produces the best fitting to speed–density observations under specific order of splines and possesses great flexibility to accommodate the exhibited nonlinearity in speed–density relationships. Jam density can be estimated naturally using spline TSM, which is sometimes hardly obtainable in many other TSM. Derivative continuity up to one order lower than the highest spline degree can be preserved, a desirable property in some application. A five‐regime B‐spline model is found to exist for generalized speed–density relationships to accommodate five traffic operating conditions: free flow, transition, synchronized flow, stop and go traffic, and jam condition. A typical two‐regime B‐spline form is also explicitly given, depending only on free‐flow speed, optimal speed, optimal density, and jam density. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper develops a decision‐support model for transit‐based evacuation planning under demand uncertainty. Demand uncertainty refers to the uncertainty associated with the number of transit‐dependent evacuees. A robust optimization model is proposed to determine the optimal pick‐up points for evacuees to assemble, and allocate available buses to transport the assembled evacuees between the pick‐up locations and different public shelters. The model is formulated as a mixed‐integer linear program and is solved via a cutting plane scheme. The numerical example based on the Sioux Falls network demonstrates that the robust plan yields lower total evacuation time and is reliable in serving the realized evacuee demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号