首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity-based models of travel demand have received considerable attention in transportation planning and forecasting in recent years. However, in most cases they use a micro-simulation approach, thereby inevitably including a stochastic error that is caused by the statistical distributions of random components. As a consequence, running a transport micro-simulation model several times with the same input will generate different outputs, which baffles practitioners in applying such a model and in interpreting the results. A common approach is therefore to run the model multiple times and to use the average value of the results. The question then becomes: what is the minimum number of model runs required to reach a stable result? In this paper, systematic experiments are carried out using Forecasting Evolutionary Activity-Travel of Households and their Environmental RepercussionS (FEATHERS), an activity-based micro-simulation modelling framework currently implemented for the Flanders region of Belgium. Six levels of geographic detail are taken into account. Three travel indices – average daily activities per person, average daily trips per person and average daily distance travelled per person, as well as their corresponding segmentations – are calculated by running the model 100 times. The results show that the more disaggregated the level, the larger the number of model runs is needed to ensure confidence. Furthermore, based on the time-dependent origin-destination table derived from the model output, traffic assignment is performed by loading it onto the Flemish road network, and the total vehicle kilometres travelled in the whole Flanders are subsequently computed. The stable results at the Flanders level provides model users with confidence that application of FEATHERS at an aggregated level requires only limited model runs.  相似文献   

2.
Several unconventional intersection designs have been proposed as an innovative approach to mitigate congestion at heavily congested at‐grade signalized intersections. Many of these unconventional designs were shown to outperform conventional intersections in terms of the average control delay and the overall intersection capacity. Little research has been conducted to compare the performance of these unconventional intersections to each other under different volume conditions. This study evaluated and compared the operational performance of four unconventional intersection schemes: the crossover displaced left‐turn (XDL), the upstream signalized crossover (USC), the double crossover intersection (DXI) (i.e., half USC), and the median U‐turn (MUT). The micro‐simulation software vissim (PTV Planung Transport Verkehr AG, Karlsruhe, Germany) was used to model and analyze the four unconventional intersections as well as a counterpart conventional one. The results showed that the XDL intersection constantly exhibited the lowest delays at nearly all tested balanced and unbalanced volume levels. The operational performance of both the USC and the DXI was similar in most volume conditions. The MUT design, on the other hand, was unable to accommodate high approach volumes and heavy left‐turn traffic. The capacity of the XDL intersection was found to be 99% higher than that of the conventional intersection, whereas the capacity of the USC and the DXI intersections was about 50% higher than that of the conventional intersection. The results of this study can provide guidance on choosing among alternative unconventional designs according to the prevailing traffic conditions at an intersection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on the uncertainty of simulation results in accident reconstruction. Since the Monte Carlo Method (MCM) requires a large number of simulation runs, in order to reduce the simulation time of MCM in evaluating the uncertainty of simulation results, a new method named “Response Surface-Monte Carlo Method (RS-MCM)” was proposed. Firstly, Response Surface Methodology (RSM) was used to obtain an approximate model of the true accident simulation model, and then the uncertainty of simulation results was evaluated by combining this approximate model and MCM. The steps of RS-MCM include the generation of sample sets, the determination of response surface model and the statistical analysis of simulation results. The distribution of reconstruction results was obtained using RS-MCM, which can provide more comprehensive information in traffic accident survey, such as the probability of a simulation result at any given confidence interval falling within an arbitrary interval and so on. Finally, three cases have been employed to evaluate the effectiveness of the proposed RS-MCM.  相似文献   

4.
To assess safety impacts of untried traffic control strategies, an earlier study developed a vehicle dynamics model‐integrated (i.e., VISSIM‐CarSim‐SSAM) simulation approach and evaluated its performance using surrogate safety measures. Although the study found that the integrated simulation approach was a superior alternative to existing approaches in assessing surrogate safety, the computation time required for the implementation of the integrated simulation approach prevents it from using it in practice. Thus, this study developed and evaluated two types of models that could replace the integrated simulation approach with much faster computation time, feasible for real‐time implementation. The two models are as follows: (i) a statistical model (i.e., logit model) and (ii) a nonparametric approach (i.e., artificial neural network). The logit model and the neural network model were developed and trained on the basis of three simulation data sets obtained from the VISSIM‐CarSim‐SSAM integrated simulation approach, and their performances were compared in terms of the prediction accuracy. These two models were evaluated using six new simulation data sets. The results indicated that the neural network approach showing 97.7% prediction accuracy was superior to the logit model with 85.9% prediction accuracy. In addition, the correlation analysis results between the traffic conflicts obtained from the neural network approach and the actual traffic crash data collected in the field indicated a statistically significant relationship (i.e., 0.68 correlation coefficient) between them. This correlation strength is higher than that of the VISSIM only (i.e., the state of practice) simulation approach. The study results indicated that the neural network approach is not only a time‐efficient way to implementing the VISSIM‐CarSim‐SSAM integrated simulation but also a superior alternative in assessing surrogate safety. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
To quantify the level of uncertainty attached to forecasts of CO2 emissions, an analysis of errors is undertaken; looking at both errors inherent in the model structure and the uncertainties in the input data. Both error types are treated in relation to CO2 emissions modelling using a case-study from Brisbane, Australia. To estimate input data uncertainty, an analysis of traffic conditions using Monte Carlo simulation is used. Model structure induced uncertainties are also quantified by statistical analysis for a number of traffic scenarios. To arrive at an optimal overall CO2 prediction, the interaction between the two components is taken into account. Since a more complex model does not necessarily yield higher overall accuracy, a compromise solution is found. The results suggest that the CO2 model used in the analysis produces low overall uncertainty under free flow traffic conditions. When average traffic speeds approach congested conditions, however, there are significant errors associated with emissions estimates.  相似文献   

7.
The primary objective of this paper is to provide a statistical relationship between traffic conflicts estimated from microsimulation and observed crashes in order to evaluate safety performance, in particular the effect of countermeasures. A secondary objective is to assess the effect of conflict risk tolerance and number of simulation runs on the estimates of countermeasure effects so obtained. Conflicts were simulated for a sample of signalized intersections from Toronto, Canada, using VISSIM microscopic traffic simulation and several crash–conflict relationships were obtained. A separate sample of treated intersections from Toronto was used to compare countermeasure effects from the integrated crash–conflict expression to a conventional, but rigorous crash-based Empirical Bayes before-and-after analysis that was already done, with the results published, for the same sites and treatment. The countermeasure considered for this investigation involved changing the left turn signal operation for the treated intersection sample from permissive to protected-permissive. The results support the view that countermeasure effects can be estimated reliably from conflicts derived from microsimulation, and more so when a suitable number of simulation runs and conflict tolerance thresholds are used in the crash–conflict relationship.  相似文献   

8.
This Taiwan traffic‐adaptive arterial signal control model borrowed its traffic flow framework mainly from a British traffic‐adaptive control model with a cyclic traffic progression function, i.e. SCOOT (Split Cycle Office Optimisation Technique). The new arterial control model can take into account delays of both major and minor streets and make real‐time signal timing decisions with optimal two‐way signal offsets, so as to create the best arterial signal operation performance. It has been developed to be an online real‐time software for both simulation testing and field validation. Through simulation, it was found that the performance when operating this newly developed real‐time arterial traffic‐adaptive model was significantly better than when using the optimal fixed‐time arterial timing plan. On the aspect of field testing, three signalized intersections located in East District, Tainan City, Taiwan were selected to be the test sites. Fairly good traffic control performance has been demonstrated in that it can effectively reduce travel delays of the control arterial as a whole. Additional discussions about how to combine travel delay and the total number of vehicle stops into a new control performance index have also been included to make the new traffic‐adaptive model more flexible and reasonable to meet the expectations of different driver groups in the arterial system.  相似文献   

9.
Use of traffic simulation has increased in recent decades; and this high-fidelity modelling, along with moving vehicle animation, has allowed transportation decisions to be made with better confidence. During this time, traffic engineers have been encouraged to embrace the process of calibration, in which steps are taken to reconcile simulated and field-observed performance. According to international surveys, experts, and conventional wisdom, existing (non-automated) methods of calibration have been difficult or inadequate. There has been extensive research on improved calibration methods, but many of these efforts have not produced the flexibility and practicality required by real-world engineers. With this in mind, a patent-pending (US 61/859,819) architecture for software-assisted calibration was developed to maximize practicality, flexibility, and ease-of-use. This architecture is called SASCO (i.e. Sensitivity Analysis, Self-Calibration, and Optimization). The original optimization method within SASCO was based on “directed brute force” (DBF) searching; performing exhaustive evaluation of alternatives in a discrete, user-defined search space. Simultaneous Perturbation Stochastic Approximation (SPSA) has also gained favor as an efficient method for optimizing computationally expensive, “black-box” traffic simulations, and was also implemented within SASCO. This paper uses synthetic and real-world case studies to assess the qualities of DBF and SPSA, so they can be applied in the right situations. SPSA was found to be the fastest method, which is important when calibrating numerous inputs, but DBF was more reliable. Additionally DBF was better than SPSA for sensitivity analysis, and for calibrating complex inputs. Regardless of which optimization method is selected, the SASCO architecture appears to offer a new and practice-ready level of calibration efficiency.  相似文献   

10.
The urban parking and the urban traffic systems are essential components of the overall urban transportation structure. The short-term interactions between these two systems can be highly significant and influential to their individual performance. The urban parking system, for example, can affect the searching-for-parking traffic, influencing not only overall travel speeds in the network (traffic performance), but also total driven distance (environmental conditions). In turn, the traffic performance can also affect the time drivers spend searching for parking, and ultimately, parking usage. In this study, we propose a methodology to model macroscopically such interactions and evaluate their effects on urban congestion.The model is built on a matrix describing how, over time, vehicles in an urban area transition from one parking-related state to another. With this model it is possible to estimate, based on the traffic and parking demand as well as the parking supply, the amount of vehicles searching for parking, the amount of vehicles driving on the network but not searching for parking, and the amount of vehicles parked at any given time. More importantly, it is also possible to estimate the total (or average) time spent and distance driven within each of these states. Based on that, the model can be used to design and evaluate different parking policies, to improve (or optimize) the performance of both systems.A simple numerical example is provided to show possible applications of this type. Parking policies such as increasing parking supply or shortening the maximum parking duration allowed (i.e., time controls) are tested, and their effects on traffic are estimated. The preliminary results show that time control policies can alleviate the parking-caused traffic issues without the need for providing additional parking facilities. Results also show that parking policies that intend to reduce traffic delay may, at the same time, increase the driven distance and cause negative externalities. Hence, caution must be exercised and multiple traffic metrics should be evaluated before selecting these policies.Overall, this paper shows how the system dynamics of urban traffic, based on its parking-related-states, can be used to efficiently evaluate the urban traffic and parking systems macroscopically. The proposed model can be used to estimate both, how parking availability can affect traffic performance (e.g., average time searching for parking, number of cars searching for parking); and how different traffic conditions (e.g., travel speed, density in the system) can affect drivers ability to find parking. Moreover, the proposed model can be used to study multiple strategies or scenarios for traffic operations and control, transportation planning, land use planning, or parking management and operations.  相似文献   

11.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Yield control and full signalization are typical traffic control solutions that can be used at large roundabouts. In the face of increasing congestion issues, it is preferred to use yield control during off‐peak periods and full signalization during peak periods. To automatically accommodate time‐varying vehicular demands, a multi‐level traffic control (MTC) is developed to implement hybrid yield control and fully actuated control at large four‐leg roundabouts. With new application of traffic control devices and traffic detection system, the right‐of‐way can be assigned to entering and circulating vehicles in three modes. The ‘all entering’ mode is equivalent to a yield control. The ‘no entering’ and ‘concurrent entering’ modes are equivalent to a fully actuated control. On the basis of time headways and occupancy times that are detected on the entry and circulatory roadways, the mode of right‐of‐way assignment can be changed in response to actual traffic conditions. For a specific mode of right‐of‐way assignment, traffic signal operation is managed by some detectable traffic events that are happening. The results of the simulation experiments conducted by VISSIM indicated that: (i) MTC was stabilized at the ‘all entering’ mode during off‐peak periods and at the ‘concurrent entering’ mode during peak periods; (ii) MTC would typically change the mode of right‐of‐way assignment according to actual traffic conditions as vehicular demands increased from off‐peak to peak or decreased from peak to off‐peak; and (iii) statistically speaking, MTC inherited the operational advantages of yield control and fully actuated control, and could be effective in improving the operational performance of large four‐leg roundabouts for all hours of the day, regardless of the level of left‐turn ratios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The Air Holding Problem Module is proposed as a decision support system to help air traffic controllers in their daily air traffic flow management. This system is developed using an Artificial Intelligence technique known as multiagent systems to organize and optimize the solutions for controllers to handle traffic flow in Brazilian airspace. In this research, the air holding problem is modeled with reinforcement learning, and a solution is proposed and applied in two case studies of the Brazilian airspace. The system can suggest more precise and realistic actions based upon past situations and knowledge of the professionals and forecast the impact of restrictive measures at the local and/or overall level. The first case study shows performance improvements in traffic flows between 8 and 47% at the local level up to 49% at the overall level. In the second case study, performance improvements were between 15 and 57% at the local level and between 41 and 48% at the overall level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Two three‐phase actuated control strategies at diamond interchanges were investigated for different ramp spacings and traffic patterns. An advanced experimental design, hardware‐in‐the‐loop control, was employed for the simulation study. Operational performance was identified in terms of cycle length, average delay and total stops. Experimental results showed that the two phasing strategies gave similar performance in terms of cycle length and average delay, but not stops. The cycle length of three‐phase operation increased slightly as the ramp spacing became wider. The delay of each strategy was dependent on the traffic pattern, but there was a distinct movement preference for each strategy. The total stops decreased as the spacing increased, and it was the most sensitive variable for the studied traffic demand level. It was also shown that the concept of the hardware‐in‐the‐loop control provides an effective way to evaluate the signal phasing and control strategies.  相似文献   

15.
Currently, the applicability of macroscopic Dynamic Network Loading (DNL) models for large-scale problems such as network-wide traffic management, reliability and vulnerability studies, network design, traffic flow optimization and dynamic origin–destination (OD) estimation is computationally problematic. The main reason is that these applications require a large number of DNL runs to be performed. Marginal DNL simulation, introduced in this paper, exploits the fact that the successive simulations often exhibit a large overlap. Through marginal simulation, repeated DNL simulations can be performed much faster by approximating each simulation as a variation to a base scenario. Thus, repetition of identical calculations is largely avoided. The marginal DNL algorithm that is presented, the Marginal Computation (MaC) algorithm, is based on first order kinematic wave theory. Hence, it realistically captures congestion dynamics. MaC can simulate both demand and supply variations, making it useful for a wide range of DNL applications. Case studies on different types of networks are presented to illustrate its performance.  相似文献   

16.
17.
18.
This paper and its companion present a study of railroad classification yard strategies that allow for blocks of destinations to be assigned to classification tracks in different ways, depending on the time of day, week or month. With the same number of tracks, more classifications can be handled by this method. The paper examines homogeneous traffic; that is, traffic patterns where all blocks have the same amount of traffic, where cars for all blocks depart equally frequently from the yard and where the overall traffic flow does not change with time. The results represent the beginning of a better understanding of yard operations, which should be useful for designing new yards, planning expansions of existing ones and evaluating the impact of changes (planned and unplanned) on traffic patterns. The paper concentrates on two sorting strategies: sorting by train (perhaps the most commonly used strategy in the United States today), and triangular sorting. For both strategies, formulas are given for the minimum number of tracks, number of switches and for the total space requirements. For triangular sorting, the yard delay and total space depend on the time chosen between reswitches. These two measures of performance can be reduced if one is willing to accept a sorting effort slightly higher than minimum. The trade-off can be explored numerically. For sorting by train, yard delay and total space are not significantly affected by the sorting method; there is no such trade-off. It appears that sorting by train results in less work, delay and space requirements than triangular sorting, at least in most instances when either could be used. Triangular sorting, however, can be used when there are not enough tracks to allow sorting by train.  相似文献   

19.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the combination effects of queue jump lanes (QJLs) on signalised arterials to establish if a multiplier effect exists, that is, the benefit from providing QJLs at multiple intersections is higher than the sum of benefits from providing them individually at each of those intersections. To explore the combination effects on bus delay and total person delay, a delay estimation model is developed using kinematic wave theory, kinematic equations and Monte Carlo simulation. In addition, to investigate the combination effects in offset settings optimised for bus delay or total person delay, offset optimisation models are proposed. Validation results using traffic micro‐simulation indicate the effectiveness and computational efficiency of the proposed models. Results of a modelling test bed suggest that providing QJLs at multiple intersections can create a multiplier effect on one‐directional bus delay savings with signal offsets that provide bus progression. Furthermore, optimising offsets to minimise bus delay tends to create a multiplier effect on one‐directional bus delay savings, particularly when variations in dwell times are not high. The reason for the multiplier effect may be that providing QJLs reduces variations in bus travel times, which makes signal coordination for buses perform more effectively. From a policy perspective, the existence of a multiplier effect suggests that a corridor‐wide scale implementation of QJLs has considerable merit. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号