首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
膨胀土地区铁路路基优质填料匮乏,可采用环保的生物聚合物对膨胀土进行改良。通过开展室内力学性能及微观分析试验,研究黄原胶和瓜尔胶2种生物聚合物对膨胀土力学性能的影响规律及微观机理。结果表明:黄原胶和瓜尔胶与土中矿物反应生成的胶结物能有效改善土颗粒之间的黏结强度、提高土体黏聚力,进而降低膨胀土胀缩性,提高抗剪强度和无侧限抗压强度;瓜尔胶改良土强度提升效果优于黄原胶改良土,综合考虑路基填料强度和变形,胶土比为1.0%时瓜尔胶的改良效果最优;掺入黄原胶和瓜尔胶可有效限制裂隙发展,干湿循环次数相同时,黄原胶和瓜尔胶改良土的裂隙数量和宽度显著低于膨胀土,且破坏类型从脆性破坏转化为塑性破坏;随着干湿循环次数的增加,改良土和膨胀土强度均呈衰减趋势,但相比于膨胀土,瓜尔胶改良土抗剪强度有较大提升,而黄原胶改良土稳定性更好。  相似文献   

2.
对水泥掺量为4%、5%、6%、8%和10%的水泥改良高液限黏土试样进行干湿循环处理,开展三轴压缩试验和无侧限抗压强度试验,研究改良土的黏聚力、内摩擦角和无侧限抗压强度随干湿循环次数的变化规律。研究结果表明:(1)内摩擦角、黏聚力和无侧限抗压强度均随干湿循环次数的增加而衰减,无侧限抗压强度和黏聚力的衰减较大,内摩擦角的衰减较小(小于10%);(2)随着水泥掺量的增加,干湿循环作用导致的衰减效应逐渐减弱;(3)当水泥掺量为4%、5%和6%时,无侧限抗压强度和黏聚力的衰减率较大,最大衰减率均大于10%;(4)当水泥掺量大于等于8%,黏聚力和无侧限抗压强度的衰减率较小,最大衰减率均小于10%;(5)工程中可选取8%作为最优水泥掺量配置改良高液限黏土。  相似文献   

3.
为探究水泥、石灰以及长安大学4号固化剂和多种纤维复合固化砂土在干湿循环后的力学性能,利用正交设计方案进行无侧限抗压强度试验,并将试样进行扫描电镜(SEM)试验和能谱仪(EDS)检测对其微观机理进行分析。研究结果表明:3种固化剂及纤维均能有效提高复合固化砂土的无侧限抗压强度,其中龄期和固化剂品种对复合固化砂土的抗压强度影响最大,干湿循环次数次之,纤维掺量和固化剂掺量有一定的影响,而纤维品种对无侧限抗压强度的影响最小;纤维掺量0.45%,固化剂掺量8%时效果较好;纤维加筋固化砂土的无侧限抗压强度随着干湿循环次数的增加而显著下降。鉴于良好的抗干缩湿胀耐久性能,建议使用8%水泥与0.45%的改性聚丙烯纤维作为固化砂土的复合固化材料。  相似文献   

4.
以贵州地区某工程的膨胀土为研究对象,通过室内试验,研究石灰掺入率、压实系数及养护龄期对改良土无侧限抗压强度的影响。试验结果表明:改良土无侧限抗压强度随着压实系数的增大而增大,随着龄期的增长而增大,随着石灰掺入率的增加先增大后减小,最佳掺灰率为9%。无侧限抗压强度影响因素的灰色关联度分析结果表明,压实系数对改良土无侧限抗压强度的影响最大,其次是养护龄期,而掺灰率的影响最小。改良土的应力应变关系曲线呈应变软化模型,试样的破坏模式为脆性破坏。本文的研究结果可为类似工程提供借鉴。  相似文献   

5.
泥质岩土石料填筑体因风化引起的工后变形沉降破坏,已成为道路等土建设施成败的关键。基于此,对泥质岩烘干与浸水循环条件下,侧向自由与侧向约束下的膨胀与收缩变形特征进行试验研究,研究结果表明:通过无侧限状态下,自然风干的试样与加热带加速风干的试样变形特征对比可知,加热带加速风干过程不影响试样干湿过程中整体的体积变形趋势,同样可以体现泥质岩试样在自然状态下循环干湿的变化特征;通过加热带风干条件下,无侧限和有侧限约束下的试样对比可知,约束条件不影响试样过程中整体的体积变形趋势;泥质岩在循环干湿风化过程的单次浸水和单次风干过程的体积变形特征与岩石受荷蠕变特征相似,并提出类Kelvin膨胀及收缩模型,与试验数据拟合效果良好;自然风干泥质岩试样在循环干湿风化过程中随干湿次数的增加,体积变形量逐渐增大,循环干湿过程中试样变形稳定所需时间主要取决于试样内部裂隙的扩展情况。  相似文献   

6.
李庆鸿 《中国铁路》2006,(11):15-19
膨胀土遇水膨胀、脱水干缩不能直接填筑路基,因此必须进行改良。改良膨胀土路基施工质量控制主要包括全线取土场土质调查与膨胀土物理性质试验、改良机理分析和方案选择、改良效果比较及参数确定。改良土拌和是使膨胀土与石灰产生理化反应,降低或消除膨胀性,增强水稳性和耐久性。改良膨胀土路基填筑质量控制包括基底处理、基床以下路堤与基床底层填筑、砂填层和复合土工膜铺设、基床表层级配碎石填筑、路桥(涵)过渡段路基填筑等环节。在用改良膨胀土填筑路基过程中,应对填料的液限、塑限、击实、无侧限抗压强度、无荷膨胀率、50kPa荷载下有荷膨胀率、胀缩总率、浸水72h崩解等进行复查试验。  相似文献   

7.
以河南省禹州地区的弱膨胀土为研究对象,着重研究了掺灰比对膨胀土物理性质、强度和水稳性的影响规律,分析其内在的改良机理,得出了石灰改良膨胀土的最佳掺灰比。试验结果表明,随着掺灰比的增大,膨胀土的塑性指数和胀缩性均呈减小趋势,且掺灰比为4%时可有效降低胀缩性,然而掺灰比>4%时对胀缩性的进一步降低效果不明显,因此确定最佳掺灰比为4%;与素土试样相比,掺灰比为4%的试样的压缩性降低,无侧限抗压强度增强,其水稳性的改善进一步表明了石灰的改良效果。  相似文献   

8.
改良土是近年来在缺乏可用性的路基填料地区中广泛采用的一种填料,对于改良后路基填料的基本工程性质,反复干湿循环之后对填料强度的影响及其影响机理关注较多,而对在长期干燥或长期潮湿环境下改良土的工程性质还缺乏探讨.本文对内蒙地区(新建包神铁路)工地现场的粉细砂土样进行水泥改良,将不同龄期的试样分别放在干燥、潮湿、干-湿交替3种不同环境中一段时间后,检测试样的无侧限抗压强度、含水率和质量变化,通过分析试验数据,从而了解改良粉细砂在不同环境下的工程特性.  相似文献   

9.
软岩改良土无侧限抗压强度试验研究   总被引:1,自引:0,他引:1  
研究目的:无侧限抗压强度是评价改良土性能的一个关键性指标,本文对水泥改良和石灰改良的风化泥质板岩的无侧限抗压强度进行试验研究.通过试验揭示石灰改良土存在最佳掺合量的基本规律;并对水泥改良土不同的养生条件、龄期、压实度等因素对无侧限抗压强度的影响进行一系列对比分析,验证在相同压实度条件下,水泥改良土的无侧限抗压强度优于石灰改良土的无侧限抗压强度.研究结论:通过试验研究得出:水泥改良土的无侧限抗压强度随着水泥掺合量增大而增大,因水泥改良土不存在最佳水泥掺合量;用水泥来稳定软岩这种加固方法具有非常好的水稳定性,相同压实度条件下的水泥改良土无侧限抗压强度并非在最优含水率时达到最大;因此在改良土地填筑过程中要进行养护.  相似文献   

10.
采用水泥改良细粒含量46. 53%的粉细砂,并对该粉细砂进行干湿循环试验,比较不同影响因素对改良土耐久性的影响。试验结果表明:水泥掺量11%、压实系数0. 95、含水率高于最优含水率1%时,水泥改良土无侧限抗压强度最高;在经济性和适用性方面,水泥掺量5%的粉细砂改良土优于水泥掺量8%和11%的粉细砂改良土。  相似文献   

11.
聚丙烯纤维红黏土无侧限抗压强度试验研究   总被引:1,自引:0,他引:1  
通过无侧限抗压强度试验,研究聚丙烯纤维对红黏土无侧限抗压强度的影响规律。试验结果表明,在红黏土中掺入一定量的聚丙烯纤维,可以明显地提高其无侧限抗压强度,聚丙烯纤维土的无侧限抗压强度是素土的1.18~2.54倍;聚丙烯纤维土的无侧限抗压强度随着纤维含量和纤维长度的增加而增大。纤维能提高红黏土的残余强度,增强了土体的破坏韧性,使破坏模式由脆性破坏向塑性破坏转变;纤维在土体中形成了空间网状结构,约束了土体的变形,提高了土体的整体性。本文的研究成果对聚丙烯纤维红黏土作为路基填土材料的工程应用提供了试验数据和理论依据。  相似文献   

12.
对广西红黏土改良路基填料进行干湿循环试验,比较水泥掺量、含水率、是否添加改良剂等因素对改良土耐久性的影响。红黏土水稳性差,干湿循环后出现一定程度的质量损失,而新型改良剂对提高红黏土干湿循环下的耐久性作用显著。试验结果表明:水泥掺量11%~15%、压实系数0.9、含水率高于最优含水率6%~7%时,无侧限抗压强度和质量损失率满足要求。  相似文献   

13.
干湿循环对水泥改良土疲劳强度影响的试验研究   总被引:12,自引:3,他引:9  
通过振动三轴试验,研究干湿循环过程对水泥改良粉质粘土和水泥改良粉土疲劳强度的影响。结果表明:在动应力作用下,两种改良土的破坏均为脆性破坏;干湿循环次数对水泥改良土疲劳强度的影响与土类有关,而改良粉质粘土疲劳强度经1次干湿循环后,趋于稳定,而改良粉土疲劳强度经2次干湿循环后才趋于稳定;稳定后的疲劳强度大约下降为静强度的38%左右。水泥改良土的破坏塑性应变随干湿循环次数增加有所增加,但是不超过2%。  相似文献   

14.
干湿循环过程导致水泥改良土强度衰减机理的研究   总被引:2,自引:1,他引:1  
水泥改良土是铁路路基工程中重要的填料。通过试验研究干湿循环过程对水泥改良粉质黏土与粉土强度衰减的影响程度,分析干湿循环过程导致水泥改良土强度衰减的机理,并进行了试验验证。结果表明,土料中黏粒团的干缩湿胀变形是引起干湿循环后改良土强度衰减的主要原因,适当降低改良土料中黏粒的相对含量可以有效提高干湿循环后改良土的强度。对于粉质黏土,采用掺砂方法,可使干湿循环后的水泥改良粉质黏土强度降低率减少50%。前2次干湿循环是导致改良土强度降低的主要过程,第3次干湿循环后,改良土的强度变化将趋于稳定。  相似文献   

15.
为了研究纤维掺量对玄武岩纤维水泥改良风积沙的孔隙结构和无侧限抗压强度的影响,开展核磁共振试验和无侧限抗压强度试验。试验选用玄武岩纤维,纤维掺量分别为0%,0.2%,0.5%,0.8%,1.1%,1.4%,1.7%,水泥掺量为5%,风积沙来自新疆和若铁路工地现场。核磁共振试验结果表明,水泥改良风积沙的T2弛豫时间为0.37μs~1.98 s,对应的孔隙半径为0.74 nm~0.39 mm;而玄武岩纤维水泥改良风积沙的T2弛豫时间为0.31μs~1.07 s,对应的孔隙半径为0.61 nm~0.21 mm。与未掺纤维的水泥改良风积沙试样相比,纤维掺量为0.8%的玄武岩纤维水泥改良风积沙试样中的大孔占比减少了25.7%,中孔占比增加了12.7%,而微孔和小孔占比变化较小。无侧限抗压强度试验研究结果表明,水泥改良风积沙试样的无侧限抗压强度和峰值应变分别为0.80 MPa,1.29%,与水泥改良风积沙相比,玄武岩纤维水泥改良风积沙试样无侧限抗压强度的强度增强比为1.14~1.54,最优纤维掺量为0.8%;而玄武岩纤维水泥改良风积沙的峰值应变与纤维掺量正相关,延性增强比为1.43~2.67。掺入纤...  相似文献   

16.
研究目的:通过中等膨胀土扰动击实样品的不同干湿循环路径,进行1~12次的干湿循环试验,探讨抗剪强度、膨胀率、膨胀力与干湿循环路径、循环次数的关系,明确干湿循环的试验条件以及干湿循环特征循环参数,从而为膨胀土边坡稳定性分析提供干湿循环试验依据。研究结论:(1)中等膨胀土扰动击实试样的干湿循环试验,随着干湿循环次数的增加,抗剪强度随之减小,经过5次干湿循环后,抗剪强度收敛趋于稳定;(2)经干湿循环后,膨胀土的膨胀率和膨胀力均具不可逆性,随着干湿循环次数增加而随之减小,5次干湿循环后膨胀率和膨胀力收敛趋于稳定,5次干湿循环可以作为干湿循环试验的特征循环参数;(3)本研究成果可作为干湿循环的标准试验方法,为膨胀土边坡稳定性分析提供依据。  相似文献   

17.
为了研究弱膨胀土作为铁路路基填料的适用性,采用室内试验的研究方法,对东北严寒地区某铁路地基弱膨胀土进行不同含水率幅度变化的干湿循环试验,分析其裂隙拓展、胀缩变形和抗剪强度参数变化规律.试验结果表明:弱膨胀土随干湿循环产生裂隙,进而裂隙分支拓展并贯通,网格化后破坏后趋于稳定,并具不可逆性;在干湿循环作用下,弱膨胀土的膨胀...  相似文献   

18.
针对武汉—广州高速铁路路基土的加强措施问题,对拌制和填筑设备进行筛选,制定实施了高速铁路路基土改良方案的施工方法,并采用掺加不同水泥剂量实验分析和测试、实验现场碾压、路基压实效果检测、强度试验检测与改良土泡水试验等方法来获得水泥改良土强度与水稳性等相关指标。研究结果表明:水泥改良土填筑压实检测时间和检测标准应考虑其时效性;水泥改良土的无侧限抗压强度与室内无侧限抗压强度相差不大;全-强风化泥质板岩掺加水泥改良后具有较高的强度与良好的水稳性,最后,从施工工艺和实验分析角度分析得出改良土适合高速铁路路基填料。  相似文献   

19.
依托室内试验,研究玻璃纤维和石灰对红黏土无侧限抗压强度的影响规律。试验结果表明:在红黏土中掺入玻璃纤维能显著提高其无侧限抗压强度,使其具有较好的水稳定性;纤维石灰土的无侧限抗压强度增长率高于纯纤维土或石灰土;纤维土的无侧限抗压强度随着纤维长度的增加而增加,随着纤维掺量的增加先增加后减小,当掺量超过1‰后,强度随着掺量的增加而减小;纤维石灰土的无侧限抗压强度在未浸水条件下均随着纤维长度和掺量的增加而增大;浸水条件下,无侧限抗压强度在纤维长度未达到9 mm时随着纤维长度和掺量的增加而增大。研究成果可为纤维和石灰改良路基填土的工程应用提供参考价值。  相似文献   

20.
为了研究纤维掺量对水泥改良风积沙无侧限抗压强度和孔径分布的影响,进行聚丙烯纤维水泥改良风积沙的无侧限抗压强度试验和核磁共振试验。纤维掺量为0,6‰,8‰和10‰,水泥掺量为4%和5%,试样标准养护龄期为7 d。试验结果表明,纤维水泥改良风积沙的T2谱曲线存在3个峰值,最可几孔径和孔隙率随着纤维掺量的增大而减小,纤维掺量大于8‰,结果则相反。适量纤维加筋水泥改良风积沙,可以减小水泥改良风积沙内部孔隙,小孔和中孔增多,大孔减少。未掺纤维的水泥改良风积沙的应力-应变曲线呈应变软化型,而纤维水泥改良风积沙的应力-应变曲线随着纤维掺量的增大逐渐趋向于应变硬化型。纤维水泥改良风积沙的应力-应变曲线大致分为孔隙压实、弹性变形、弹塑性变形和应力衰减等4个阶段。随着纤维掺量增大,应力-应变曲线整体右移,延性增强,无侧限抗压强度、峰值应变和能量吸收能力随着纤维掺量的增大而增大,超过最优纤维掺量8‰,规律则相反。水泥掺量4%,纤维掺量8‰的水泥改良风积沙的无侧限抗压强度、峰值应变、能量吸收能力分别为水泥改良风积沙的1.31倍、2.04倍和1.37倍。纤维水泥改良风积沙的孔隙率与无侧限抗压强度呈幂函数关系。研...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号