首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 51 毫秒
1.
基于非参数回归的短时交通流预测研究综述   总被引:2,自引:0,他引:2  
短时交通流预测是实现交通控制和诱导的关键问题之一。综述了基于非参数回归的短时交通流预测方法,指出了状态向量的选取没有考虑天气环境等存在的问题,提出了改进思路和方法,即基于动态聚类和决策树的历史数据组织方式、时空一天气环境相结合的状态向量选取方法以及基于密集度和状态向量的自适应变K机制等,期望通过这些改进能提高基于非参数回归短时交通流的预测精度,为交通控制和交通诱导建立基础。  相似文献   

2.
K近邻短期交通流预测   总被引:1,自引:0,他引:1  
从分析短时交通流特性入手,利用非参数回归中K近邻的方法,对道路交通流量进行短期预测;采用贵阳市道路交通流量的实际数据进行验证。结果表明:K近邻非参数回归预测模型能较为准确的进行道路短期交通流预测,该方法可用于短期交通流预测。  相似文献   

3.
本文利用小波分析方法对交通流数据进行不同尺度的分解,并对不同尺度的分量建立ARMA预测模型,再由各尺度的预测得到交通流的预测.实验显示,本方法具有较好的预测精度.  相似文献   

4.
基于小波的短时交通流预测   总被引:7,自引:0,他引:7  
本文利用小波分析方法对交通流数据进行不同尺度的分解,并对不同尺度的分量建立ARMA预测模型,再由各尺度的预测得到交通流的预测.实验显示,本方法具有较好的预测精度.  相似文献   

5.
介绍了应用小波分析方法进行信号去噪的基本原理,基于阀值小波变换去除信号高、低频噪声,然后应用小波包分解方法获取信号的特征量从而进行信号的重构,消除瞬态突变干扰信号.论述了电力参数交流采样信号的特点,并对系统结构和组成进行了分析.实验结果表明:该方法可以有效地进行信号的消噪,并获取真实的采样测量信号.这种方法对其它类似系统也具有一定参考价值.  相似文献   

6.
针对现有短时交通流预测模型的不足,提出了一种用于交通流短时预测的小波与混沌集成方法。首先对交通流序列进行小波分解,分别得到低频部分和高频部分,并在此基础上作进一步分析,结果表明交通流存在混沌特性。然后应用混沌理论分别建立低频部分和高频部分的预测模型,对低频部分和高频部分进行预测。最后应用小波理论对混沌模型预测的结果予以重构,实现对原始交通流序列的预测,与现有方法比较,结果表明该方法具有较高的精度和应用前景。  相似文献   

7.
高斯过程回归短时交通流预测方法   总被引:2,自引:0,他引:2  
已有的短时交通流预测方法均属于确定性预测,无法对预测的不确定性进行定量分析.针对上述问题,提出了一种基于高斯过程回归的短时交通流预测方法.通过该方法在对短时交通流进行预测的同时还可以得到预测的方差估计值,并依此可以确定预测值的95%置信区间.在仿真实例中,在相同条件下对所提方法与支持向量机预测方法进行比较.仿真结果表明,高斯过程回归短时交通流预测方法不仅与支持向量机预测方法具有相近的预测精度,其中均方根误差为12.09,绝对值误差为118.42,相对误差为17.32%,而且能够获得预测结果的方差估计值,从而有效实现短时交通流概率意义上的预测.  相似文献   

8.
应用BP神经网络来对路段短时交通流进行预测,预测精度和收敛速度都不是很理想,为了克服BP神经网络自身存在的非线性逼近缺陷,依据小波的时频域特征,将小波变换和BP神经网络结合起来,提出一种基于小波神经网络的短时交通流预测方法,给出了具体的网络学习算法,并结合实地调查数据进行了对比测试,分析结果证明了小波神经网络模型对短时交通流预测的有效性.  相似文献   

9.
双层K近邻算法在K近邻算法的基础上,增加了模式匹配步骤,从而提高了K近邻算法的预测精度.鉴于此,利用双层K近邻算法,对北京市微波检测器数据进行分析,进而标定算法的最优参数.同时定义了预测算法的滞后性,并将双层K近邻算法与自适应预测算法的滞后性进行了对比,从预测精度及滞后性两方面验证了双层K近邻算法的适用性.  相似文献   

10.
改进非参数回归在交通流量预测中的应用   总被引:1,自引:0,他引:1  
实时、准确的短时交通流量预测是实现交通控制与诱导的关键。结合模式识别的思想,提出基于模式识别的非参数回归算法,并将之应用于短时交通流量预测,最后用仿真试验检验了方法的有效性,仿真试验结果表明,该方法具有较高的预测精度。  相似文献   

11.
改进非参数回归在交通流量预测中的应用   总被引:1,自引:0,他引:1  
实时、准确的短时交通流量预测是实现交通控制与诱导的关键。结合模式识别的思想,提出基于模式识别的非参数回归算法,并将之应用于短时交通流量预测,最后用仿真试验检验了方法的有效性,仿真试验结果表明,该方法具有较高的预测精度。  相似文献   

12.
针对现阶段城市道路交通短时交通流预测精度不高的局限性,将小波变换引入到城市道路交通预测过程中,提出一种基于小波神经网络的预测方法。运用美国加州高速公路通行能力度量系统数据作为数据来源,应用小波变换和BP神经网络相结合对其进行预测,然后对预测结果数据进行分析,并对短时交通流进行综合评价。实验表明,该方法与传统的BP神经网络相比较,在短时交通流预测方面具有较好的有效性和优越性。  相似文献   

13.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求.  相似文献   

14.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求.  相似文献   

15.
针对实际交通系统时变复杂和变化的不确定性所带来的交通流量随机因素影响大、非线性强、规律性不明显的特征;采用小波多尺度分解的方法,将含有综合信息的时间序列分解为多个分量特征不同的时间序列,然后采用神经网络对各个分量分别进行预测,最后用实测数据进行了验证分析。结果表明,基于多尺度分析与神经网络预测模型比单神经网络预测模型预测精度高,可用于交通流的实时动态预测。  相似文献   

16.
针对实际交通系统时变复杂和变化的不确定性所带来的交通流量随机因素影响大、非线性强、规律性不明显的特征;采用小波多尺度分解的方法,将含有综合信息的时间序列分解为多个分量特征不同的时间序列,然后采用神经网络对各个分量分别进行预测,最后用实测数据进行了验证分析。结果表明,基于多尺度分析与神经网络预测模型比单神经网络预测模型预测精度高,可用于交通流的实时动态预测。  相似文献   

17.
针对实际交通系统时变复杂的特征和交通流变化的不确定性,应用小波分析理论,对原始交通数据进行了消噪处理,使消噪后的数据更能反映交通流的本质及变化规律。信息融合技术可以对不同传感器数据进行综合处理,去除冗余、克服歧义,得到比任何单个数据源更全面、更准确、更可靠的信息。综合考虑道路交通量预测的实时性、准确性和可靠性,运用基于小波分析的去噪和现代信息融合思想,提出了一种基于小波去噪和最优权重的信息融合预测方法,并用实际数据进行验证。实证分析的结果表明,该方法能够有效提高交通量的预测精度。  相似文献   

18.
交通流参数预测是交通流诱导和交通信息发布的重要依据.以信息颗粒为基 础数据分析单元,针对以往模糊时间序列模型存在的缺陷,提出一种新方法构建模糊时 间序列模型,该方法在挖掘数据内在信息关联的基础上,考虑时间变量影响下分析动态 可变的区域间隔长度.此方法主要特点是基于Gath-Geva 模糊聚类的时间序列分割,利用 模糊分割构造信息颗粒,以信息颗粒为数据单元,通过粒计算分析交通流参数动态变化 趋势.实验结果表明,基于粒计算的交通流参数预测可以预测合理的交通流参数置信区 间,比传统的参数数值预测可靠度更高,对于交通状态的动态分析具有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号