首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
首先对预测路段进行分段,然后计算各小段的行程时间并将其累加.结合道路拥挤时的集结波和消散波模型,提出基于随机排队理论的城市快速路行程时间模型.该模型简单易行且参数通过检测器即可直接获得,可以用于评价快速路的服务水平.  相似文献   

2.
为了深入研究基于路段与基于路径两种不同的建模方法在城市快速路行程时间短时预测中的预测效果,以车牌识别系统采集的行程时间数据为研究对象,分别采用历史平均法、神经网络模型、支持向量机回归模型、非参数回归模型4种典型的预测算法,对快速路的行程时间进行预测。研究结果表明,考虑交通特征的支持向量机模型会显著提高基于路段的行程时间预测效果,同时基于路径的非参数回归建模方法优于基于路段的组合建模方法,更适合城市快速路行程时间预测。  相似文献   

3.
城市快速路行程时间预测模型研究   总被引:1,自引:1,他引:0  
根据快速路行程时间数据序列规律分析,选择移动平均参数预测模型、指数平滑参数预测模型与卡尔曼滤波预测模型进行比对.通过上海市快速路车牌识别设备采集的行程时间实测数据,对各种模型的效果进行评估,结果表明:卡尔曼滤波预测模型在不同数据特征案例情况下均取得比较理想的效果.  相似文献   

4.
随着城市快速路交通信息采集系统的发展,特别是视频车牌采集系统的应用,使实时动态获得快速路行程时间成为可能,同时也促进了高精度行程时间预测的理论研究和实际应用需求. 本文基于快速路车牌识别数据检测的海量历史时间序列数据,选择预测时段的前4个时段的数据作为输入特征值,以遗传算法建立模型参数优化算法,得到训练模型及其参数,从而实现车辆行程时间的动态预测. 最后以上海市快速路系统中的三个典型路段的实测数据进行实例分析. 结果表明:与传统的指数平滑法、多元回归法、ARIMA法预测结果对比,基于SVM的预测路段平均绝对百分误差在5%以内,希尔不等系数非常接近0,SVM模型显示了更高的预测精度.  相似文献   

5.
以快速路主线通行能力最大、入口匝道排队长度及延误最低为目标,在分析城市快速路可变速度引导的基础上,提出快速路匝道感应控制算法,构建基于可变速度控制下的快速路主线与入口匝道协同控制模型.并利用实际城市快速路路段调查数据,采用VISSIM仿真软件对所建模型、算法进行了仿真验证,结果可知,文中提出的快速路协同控制模型算法可有效提高快速路主线通行能力,大幅降低入口匝道车辆排队长度及平均延误,减少车均行程时间.  相似文献   

6.
根据城市快速路的特性,将城市快速路分为基本路段、交织区和分合流区。运用Green-shields模型计算自由流行程速度,通过双线圈检测器获取地点速度并由此估算行程速度。对行程速度指数进行右侧均值和均方差的一致性检验,将服务水平量化,提出了基于行程速度指数的城市快速路服务水平评价方法,并在西安市南二环某路段上进行实例验证。评价结果表明:当自由流、高峰时段、平峰时段的行程速度分别为82.514、47.825、67.930 km·h-1时,高峰时段行程速度指数的均值和均方差检验结果分别为7.206、8.482,城市快速路服务水平为2.667,为Ⅲ级;平峰时段行程速度指数的均值和均方差检验结果分别为6.408、8.960,城市快速路服务水平为4.083,为Ⅱ级。计算结果与实际情况相符,提出的方法有效。  相似文献   

7.
过于集中的流量分配易导致出口匝道和与之相衔接的地面道路过饱和,进而影响快速路和地面路网的通行效率.为提高路网中车辆通过快速路到达目的地的通行效率,基于地面路网宏观基本图(Macroscopic Fundamental Diagram,MFD),以出口匝道通行能力和与之相衔接的地面路网承载能力为约束条件,以整个路网的车辆总行程时间最短为优化目标,建立快速路出口匝道流量分配模型.根据宏观网络车流平衡方程,采用改进的遗传算法对模型进行求解.最后,通过实际路网验证了模型的有效性.结果表明,该模型可有效提高车辆通过快速路到达目的地的通行效率,同时降低出行成本.  相似文献   

8.
快速路多匝道协调控制是一种有效解决城市交通拥挤问题的方法,考虑下游交通需求的宏观动态交通流模型与匝道排队模型为快速路系统控制提供交通需求信息。根据匝道排队状况,主线交通运行状态确定汇入主线的交通量,以系统总行程时间最短为控制目标,控制目标函数考虑了匝道调节率的变动引起的运行状态变化对最优值的影响。  相似文献   

9.
快速路多匝道协调控制是一种有效解决城市交通拥挤问题的方法,考虑下游交通需求的宏观动态交通流模型与匝道排队模型为快速路系统控制提供交通需求信息.根据匝道排队状况,主线交通运行状态确定汇入主线的交通量.以系统总行程时间最短为控制目标,控制目标函数考虑了匝道调节率的变动引起的运行状态变化对最优值的影响.  相似文献   

10.
针对紧急疏散中单向需求激增的情况,提出利用地面辅路缓冲容纳部分疏散车流,从而降低快速路疏散的整体时空风险.基于宏观交通流模型建立了快速路疏散车流演化方程,明确了上匝道车速对主线车速的影响,从而实现经典宏观交通流模型对路网状态演变处理的一致性.针对由下匝道、地面并行道路和上匝道构成的地面辅路行程时间的二分特征,建立了相应的离散时间的流量演化方程.辅路系统方程不仅可以刻画地面辅路疏散车流的主要特征,而且能与已有快速路的状态演化系统实现无缝结合.数值分析表明,利用匝道控制和辅路分流两种手段可以实现系统整体时空疏散风险的最小化控制.  相似文献   

11.
城市快速路的车速空间波动常被认为是事故风险的重要因素,但是车速空间波动很难通过传统的固定检测器来提取。为克服传统方法的不足,本文充分利用Floating Car Data(FCD)提取快速路路段的空间车速方差等道路运行指标,并在获取快速路特征指标的基础上,分别以总事故频率、追尾事故频率和侧碰事故频率为因变量建立了负二项模型。模型结果发现空间车速方差、路段行程车速对三类模型的影响呈现一致关系:空间车速方法与三类事故频率呈正相关,说明利用车速空间波动来诊断城市快速路安全风险是可行和有价值的。此外还发现路段行程车速与三类事故频率呈负相关,路段内包含平曲线对事故总频率和追尾事故都有显著正相关,但对侧碰事故的相关性不显著;立交路段与侧碰事故频率相关性显著。  相似文献   

12.
城市快速路交通状态自动判别解决方案   总被引:1,自引:0,他引:1  
林瑜  高霄  沈峰  杨中良 《城市交通》2009,7(6):76-80,65
为满足社会公众对实时交通状态信息发布服务的需求,对城市快速路交通状态自动判别解决方案的关键技术进行研究。在总结已有研究成果的基础上,对快速路交通状态判别指标、判别标准及空间对象进行分析,选取平均行程车速作为快速路交通状态的判别指标。设计了交通状态自动判别软件构架,对平均行程车速实时估计算法模块进行了详细分析。基于研究成果开发的快速路交通状态自动判别系统软件已经应用于上海市快速路监控中心。对软件的实际运行效果进行评估,结果表明,道路交通状态判别平均精度达到95%以上。  相似文献   

13.
城市快速路行程时间的统计分析与预测   总被引:1,自引:0,他引:1  
实时交通预测分析一直是ITS领域一个重要的研究课题,它的研究进展也直接影响着ITS子系统ATMS(Advanced Traffic Management System)的实施。文章以北京二环快速路为研究对象,先使用浮动车数据计算出路段在不同时段的行程时间,再采用统计分析方法得出目标路段在相同时段下的行程时间的分布规律;在此基础上,对相同时段不同路段、相同路段不同时段的行程时间分布测度进行对比分析,并将其和道路服务水平进行对照,得出了若干有意义的结论和建议;最后,对行程时间计算结果进行了检验和评价,证明了计算结果的准确性。  相似文献   

14.
基于元胞传输模型的交通事件消散建模   总被引:3,自引:0,他引:3  
介绍了元胞传输模型(CTM)的基本原理,并建立了交通事件消散时间的元胞传输模型。分析了上海市城市某段快速路交通事件发生位置处拥挤波的产生与消散,并对此问题用元胞传输模型建模并进行仿真计算。仿真结果表明,事件发生的上游形成拥挤区并慢慢向上游传递;事件清除后,拥挤波的消散较慢并会蔓延较长的距离,其消散也需要较长的时间。因此,有效的交通管理对缓解交通拥堵,减少交通延误有着重要的意义。  相似文献   

15.
城市快速路速度引导预测控制模型   总被引:1,自引:0,他引:1  
在城市快速路控制系统中,将速度引导作为控制变量,建立了宏观动态交通流模型。以车辆总行程时间与速度引导为目标函数,计算了城市快速路入口区域流量和匝道入口区域流量,建立了快速路速度引导预测控制模型,对速度引导进行优化设计,利用MATLAB软件对下游交通流突变进行仿真分析。分析结果表明:通过速度引导控制,交通流平均速度由72.704 6km.h-1上升到74.167 6km.h-1,交通流平均密度由23.011 2veh.km-1下降到21.156 7veh.km-1,波动均小于8%;速度方差下降,且最大值仅为420(km.h-1)2;速度引导控制前后的速度方差与密度方差之比分别为3.57、1.91;在交通流突变时段内,速度引导控制前后的速度方差与密度方差之比分别为4.56、2.34。可见,速度引导控制模型有效。  相似文献   

16.
在分析目前城市快速路实际使用的入口控制模型的基础上,引入时空资源效用参数作为控制变量,将并行多路任务负载均衡模型与传统ALINEA策略相结合,提出了以主辅路资源效用均衡化为主导思想的城市快速路入口均衡控制模型(TBM). 为提高模型的实用性,本文提出“非对称性改进”和“局部出入口弱互扰情况下的资源折减”这两项改进措施,并将改进的NEMA排队感应模型作为回溢的控制手段. 以合肥金寨路高架桥为背景,进行实地测试,结果表明主路平均行程时间减少了9.09%~9.44%,局部拥挤现象明显减少. 最后讨论了控制模型在不同交通条件下的适用性,均衡控制模型在高峰时段,特别是在主辅路局部拥挤程度不同的条件下,局部拥挤的改善效果比较显著.  相似文献   

17.
在分析目前城市快速路实际使用的入口控制模型的基础上,引入时空资源效用参数作为控制变量,将并行多路任务负载均衡模型与传统ALINEA策略相结合,提出了以主辅路资源效用均衡化为主导思想的城市快速路入口均衡控制模型(TBM). 为提高模型的实用性,本文提出“非对称性改进”和“局部出入口弱互扰情况下的资源折减”这两项改进措施,并将改进的NEMA排队感应模型作为回溢的控制手段. 以合肥金寨路高架桥为背景,进行实地测试,结果表明主路平均行程时间减少了9.09%~9.44%,局部拥挤现象明显减少. 最后讨论了控制模型在不同交通条件下的适用性,均衡控制模型在高峰时段,特别是在主辅路局部拥挤程度不同的条件下,局部拥挤的改善效果比较显著.  相似文献   

18.
城市道路交通状况的预测,是实现未来路况查询、车辆动态导航等智能交通系统技术的关键。该文在分析浮动车数据的时间相关性的基础上,研究城市快速路的区间旅行时间短期预测算法。首先,采用统计方法和K-NN分类法相结合的新方法对缺失数据进行填充,并利用小波变换对每天的数据进行消噪处理;其次,在分别利用时间序列模型和人工神经网络模型对城市快速路区间旅行时间进行短期预测的基础上,通过模型组合获得预测值;最后,结合北京市区二环的一段快速路区间旅行时间的历史数据和实时数据,对该文所提出的快速路区间旅行时间短期预测算法进行了评价。结果显示,该算法的预测结果的平均绝对误差百分比控制在10.43%以内,具有良好的精度。  相似文献   

19.
采用区域划分方法研究了网络行程时间率的概率分布, 提出了基于OD对的网络行程时间可靠性指标以评价城市交通可靠性; 选取影响行程时间可靠性指标的相关因素, 建立了多元线性回归模型, 用逐步回归法求解模型, 并进行了模型参数显著性检验; 根据杭州市和北京市的网约车数据计算了网络行程时间可靠性指标, 并与高峰拥堵延迟指数进行对比, 分析了网络行程时间可靠性指标的时间和空间分布规律。研究结果表明: 在多元线性回归模型中, 规划行程时间率与等待时间、费用、距离、行程时间和OD对间行程次数这5个自变量拟合得到的决定系数为0.772, 平均行程时间率与5个自变量拟合得到的决定系数为0.857, 2个模型拟合程度均较好, 回归模型显著; 规划行程时间率回归模型中等待时间、行程时间和实际行程距离的回归系数分别为0.386、0.399与-1.286, 平均行程时间率回归模型中等待时间、行程时间和实际行程距离的回归系数分别为0.162、0.177与-0.676, 2个交通可靠性指标都与等待时间和行程时间呈正相关, 和实际行程距离呈负相关; 提出的网络行程时间可靠性指标与高峰拥堵延迟指数变化趋势一致, 较好地符合现实交通状况, 从多角度反映了交通可靠性特征, 可以为路网规划提供决策支持, 帮助居民更好地进行出行路径选择。   相似文献   

20.
随着城市汽车保有量的不断增加,交通拥堵日益频繁;匝道控制是通过调节入口匝道车辆数,来缓解快速路匝道交汇处拥堵的有效方法.本文同时考虑快速路和入口匝道上的实时密度设计了匝道控制优化算法,该算法旨在控制快速路密度接近其最优值,同时减少匝道上的排队数;通过PARAMICS仿真软件对算法进行验证,并与ALINEA、Demand Capacity算法进行了比较,仿真模拟统计了快速路交通流密度、匝道排队数、总车辆行程时间以及下游流量数据.分析结果显示,实时密度控制算法是有效的,能够维持干线最大流量,保持路网交通条件的动态平衡,并且尽可能地减少排队长度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号