首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高双层集装箱列车的装载效率,保障双层集装箱列车的运行安全,建立 了一种降低重车重心高和均衡车辆转向架负重差的双层集装箱列车装载问题多目标优 化模型,并采用字典序规划法对多目标优化问题进行求解,即为存在矛盾的优化目标与 约束条件设置不同的优先级.为了优化重车重心高,采用线性分式规划将相应的混合整数 分式问题转化为一系列混合整数线性规划子问题进行求解.算例验证结果表明,研究所提 出的多目标优化方法能够在保证列车集装箱装载量最大的条件下降低集装箱车的重车 重心高,并减少其转向架负重差,具有重要的应用价值.  相似文献   

2.
重车重心限制高度是我国铁路基本技术标准之一,起着指导现场装车、保障行车安全的重要作用.本文分析了影响货物列车安全运行的因素,给出衡量车辆倾覆稳定性的主要指标,并论述了双层集装箱重车重心高度运行试验,遂渝线提速综合试验及胶济线列车交会试验的试验方案和试验过程.在分析试验数据的基础上,得出了双层集装箱重车重心高度为2400mm时能够保证行车安全的结论.此外,根据敞车、平车和棚车等主要车型在环形试验线和运营线路上进行的重车重心高度试验,分析了敞车和平车重车重心高度设置为2400mm、棚车重车重心高度设置为2200mm时的运行稳定性和平稳性的要求.  相似文献   

3.
为提高铁路军事运输的安全性,在比较分析实际装载与运行工况后,研究在一定车型、线路工况和装载条件下,货物重心纵向不偏移、横向偏移对车辆在不同速度级下通过曲线运行安全性指标(脱轨系数、轮重减载率)的影响机理。通过分析SIMPACK仿真得到的实验数据,得出车辆向内倾覆或向外倾覆时,货物重心横向偏移量越大,脱轨系数越大,轮重减载率也越大,越容易发生危险等结论。为车辆在实际不利装载条件下的运行提供一定的理论借鉴。  相似文献   

4.
驼峰调车利用车辆重力进行溜放式调车作业,是调车作业的常用方式,但驼峰下道岔区车辆脱轨事故时有发生。文章设计了现场试验,测试了驼峰调车场下6#道岔在晴天多勾溜放、雨天摩擦控制多勾溜放、雨天摩擦控制整列溜放3种工况下的横向力与垂向力,分析了编组方式对驼峰下道岔区车辆脱轨系数的影响。结果表明,空车比重车脱轨系数高12%左右,空重车混编顺序对空重车影响不同,能够小幅影响重车脱轨系数,重车在前空车在后的编组方式能在雨天摩擦控制情况下使空车脱轨系数降低16%,应根据不同工况选择空重混编顺序,整列溜放会大幅提高车辆的脱轨系数,重车平均提高41%,空车平均提高38%,应避免长编组溜放方式,为保证车辆安全及调车效率,建议每次溜放8辆车辆,在日常养修作业中,应重点关注道岔曲线外轨和尖轨区。  相似文献   

5.
横风对双层集装箱平车运行稳定性的影响   总被引:14,自引:2,他引:14  
采用流场数值模拟计算方法,计算了横风作用时的垂向气动升力系数、气动横向力系数和侧滚力矩系数,得出各系数与车辆速度和风速之间的变化关系。从动力学角度,根据力矩平衡原理推导了横风作用时车辆稳定性计算关系式,根据车辆运行的实际情况得出双层集装箱平车在不同装载情况下的临界倾覆风速和风速之间的关系,并分析了垂向气动升力、横向气动力和侧滚力矩对车辆倾覆稳定性的影响。结果显示,横风引起的力中气动横向力占主导作用;空车比重车的临界倾覆风速低;重车比空车的临界运行车速低。  相似文献   

6.
在既有线货物列车提速和重载的背景下,为了研究空车编组数量对货物列车运行安全性的影响,根据车辆系统动力学理论、列车纵向动力学理论、车辆-轨道耦合动力学理论,采用数值方法建立了空重车混编列车-轨道耦合系统动力学模型,分析了制动工况下不同数量空车编组在货物列车头、尾部时,货物列车的轮轴横向力、脱轨系数、轮重减载率等安全性指标...  相似文献   

7.
以某国产跨座式单轨车辆为研究对象,采用动力学仿真软件建立跨座式单轨系统动力学仿真模型,分析液压减振器不同失效工况对车辆动力学性能的影响.重点考察了倾覆系数、水平轮径向力、车体侧滚角和运行平稳性指数.分析结果表明:车辆在曲线轨道运行过程中,液压减振器不同位置失效工况下车辆的倾覆稳定性、抗脱轨稳定性与运行安全性均会变差,且发生工况五或工况六时,动力学性能最差,此时会严重影响到车辆的稳定运行,应减速停车疏散乘客;而车辆在直线轨道以最高运行车速75 km/h运行时,液压减振器不同的失效工况下车辆的横向和垂向平稳性与正常工况运行相比,横向平稳性影响较小,但对车辆的垂向平稳性影响较大.  相似文献   

8.
为了研究空气弹簧失气对地铁车辆动力学性能的影响,根据车辆系统动力学和非线性接触理论,建立了地铁车辆非线性动力学模型和空气弹簧失气状态下的黏滑接触力元模型,分析了地铁整车空气弹簧失气状态下地铁车辆的临界速度、轮轴横向力、轮轨横向力、脱轨系数、轮重减载率和平稳性指标并与空气弹簧正常状态进行了对比。结果表明:空气弹簧失气会使地铁车辆的临界速度降低,会使地铁车辆的脱轨系数、轮重减载率、横向平稳性和垂向平稳性明显增大,并且空簧失气对脱轨系数和垂向平稳性的影响尤为显著,因此必须密切关注空气弹簧的状态以保证地铁车辆平稳安全运行。  相似文献   

9.
基于多体动力学软件SIMPACK建立了考虑车轮磨耗过程的车辆动力学模型, 编制了自动实现轮轨迭代计算程序, 并将车辆动力学模型、轮轨接触模型、轮轨磨耗模型、轮轨外形更新及运行工况统一组织在动力学软件中。采用内嵌SIMPACK软件的子程序进行动力学计算和磨耗过程的工况和数据组织, 采用FASTSim算法进行车辆动力学计算, 采用Contact算法进行磨耗计算, 并构成在线自动磨耗计算循环, 无需外部程序的协同仿真和数据交互。基于C80B型敞车在大秦线的运行环境, 研究了车轮磨耗和车辆动力学性能在车辆运用过程中的演变。研究结果表明: 车轮踏面磨耗深度和车轮全断面磨耗面积均与运行里程呈近似线性关系, 每1.0×10~5 km的车轮磨耗深度和磨耗面积分别约为1.68mm和100.63mm2;随着车辆运行里程的增加, 车轮磨耗与车辆动力学性能也随之恶化, 车辆运行2.5×10~5 km后, 车辆横向运行平稳性从新车工况下的优级下降为良级, 脱轨系数、轮重减载率与曲线通过轮轴横向力等车辆运行安全性指标均较新车状态增大50%以上。  相似文献   

10.
对于现今弯道路段速度控制精确性不足,在TruckSim软件中全面考虑了某三轴货车的悬架动刚度特性、车身侧倾角度、轮胎非线性特性,建立了整车动力学、道路场景、驾驶策略及横向载荷转移率(PLTR)模型.通过不同弯道半径、重心高度和车速的交互式仿真实验,将仿真实验数据经三维曲面函数拟合,获得了不同附着系数下车辆转弯安全车速的侧滑数学模型,为弯道车速控制途径的产生提供了参考.研究结果表明:安全速度与重心高度、弯道半径呈现不同程度的相关性;归纳比较侧滑模型与弯道安全速度模型,可知弯道安全车速值偏于安全,并处在通用模型的安全理论值之间;考虑了纵坡对安全车速值的影响,发现在较大半径圆曲线上行驶偏于安全;建立弯道半径为300 m,重心高度为1.8 m的仿真工况,基于PLTR交互模型得出的安全车速值与该模型得到的安全车速值进行对比,计算误差从通用模型的18.4%降低到0.3%.  相似文献   

11.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

12.
列车运行过程中,脱轨系数过大将对列车运行安全产生影响并伴随脱轨隐患,因而列车脱轨系数的预测对保障列车安全运行至关重要。提出了一种基于改进BP神经网络的列车脱轨系数预测方法,利用轮轨接触横移量、接触角、车轮抬升量、列车速度对脱轨系数进行直接预测。针对传统BP神经网络收敛速度慢、易陷入局部极小值等缺陷,采用附加动量法和自适应学习率相结合的方法对其进行了改进。在ADAMS/Rail中建立车辆模型,通过该模型进行动力学仿真得到轮轨接触参数的数据,用此数据对改进BP神经网络进行验证。试验结果表明改进BP神经网络预测模型在相对误差及迭代次数上有明显改善,初步验证了该方法在列车脱轨系数预测方面的可行性。  相似文献   

13.
以国产CRH3型3节车编组高速列车为研究对象,利用计算流体力学软件Star-CD/CCM+计算了在不同横风风速和不同车速下的列车气动力荷载;将该荷载导入动力学仿真软件SIM-PACK的列车运行动力学模型中,计算出在不同横风和车速条件下的脱轨系数、减载率和倾覆系数等运行稳定性参数.计算表明:头车的气动性能和运行稳定性受横风的影响最大;根据车辆动力学性能参数确定的列车安全速度限值与横风风速之间并非线性关系.参照有关高速列车运行稳定性评定标准,给出了不同横风风速下高速列车安全运行的速度限值.  相似文献   

14.
为保障超限货物的运输安全,本文针对超限货物装载方案安全性评价进行了研究:在考虑超限货物装载安全影响因素的基础上,遵照评价体系的构建原则,建立了包含重车重心高、重心偏移量、超限等级等指标的评价体系。采用极差法对数据进行标准化处理,进而基于灰色关联分析与离差最大化方法,构建了超限货物装载方案安全性评价模型。实例研究结果表明,本文所建立的评价模型能够有效地评价超限货物装载安全性,并能够排除不确定因素与主观因素影响。  相似文献   

15.
宁波舟山港海铁联运的快速发展对双层集装箱班列的开行提出迫切需求.以绍兴-宁波舟山港集装箱海铁联运为例,分析了通道内集装箱的箱型结构、箱重统计特征.基于现行规章要求,测算不同箱型堆叠形式的限界要求,探讨满足重车重心高要求的各类堆叠形式的配载方案,并结合市场需求特征分析各配载方案的实施可行性.结果表明,堆叠形式Ⅱ、Ⅳ、Ⅴ满足现行的限界要求,且其配载方案具备相应的箱源支撑.其次,未来亟需通过修订现行装载限界、研制新型运载装备和装载加固连接件等以实现两个40 ft高箱堆叠.  相似文献   

16.
基于多体动力学软件UM建立了车辆-轨道耦合动力学模型,分别计算了车辆在无质量轨道和刚性轨道模型下的非线性临界速度、脱轨系数、车体振动加速度及轮重减载率等动力学参数.计算结果表明,车辆在刚性轨道模型下的非线性临界速度增大,同时车体的振动加速度、轮轨垂向力、轮轴横向力、轮重减载率都有不同程度上的增大,但其脱轨系数却比无质量轨道模型下的有所减小.采用刚性轨道模型较无质量轨道模型更能较真实地反映车辆的动力学性态.  相似文献   

17.
基于摩擦缓冲器动力学理论、车钩双向接触方法与车体摇枕载荷传递模型, 构建了车辆冲击三维动力学模型, 仿真了不同冲击速度与不同空重车状态的货车冲击, 分析了车辆冲击动态特性及其对摇枕横向载荷的影响, 并通过试验对仿真结果进行了验证。分析结果表明: 利用车辆冲击三维动力学模型顺利实现了车辆冲击时缓冲器动态特性、车钩连挂动态特性与摇枕横向载荷的仿真计算, 并获得了与冲击试验较为吻合的结果, 其中车钩力误差基本小于10%, 摇枕横向载荷误差基本小于25%;空车质量较小, 在冲击作用下车钩和从板姿态变化大, 因此, 重车冲击空车时车钩力动态曲线振荡特性较重车冲击重车更为明显, 甚至局部出现尖峰; 相对于车钩接触模型与力学传递特性, 摩擦缓冲器模型存在黏滞特性, 导致重车冲击重车和重车冲击空车下车钩接触力较缓冲器阻抗力分别小24%和31%;车钩力和摇枕横向载荷随着冲击速度的提高而逐渐增大, 且时间变化历程与最大峰值出现的时间基本一致, 相同速度下重车冲击重车的车钩力要大于重车冲击空车的车钩力, 在3、5、8km·h-1速度下分别大57%、25%和37%, 而产生的摇枕横向载荷刚好相反, 3种速度下分别小42%、53%和47%, 因此, 重车与空车调车连挂过程更容易造成转向架摇枕横向载荷过大, 应严格控制其连挂速度。  相似文献   

18.
铁路集装箱装载布局逐步发展成为在不同规格和不同类型货物混合平衡装载制约下追求装载空间容积和载重量综合利用率最大化问题,其研究对货物高效安全运输尤为重要。本文针对铁路集装箱混合货物平衡装载布局问题,给出铁路集装箱装后重心平衡和集重容许弯矩约束量化方法,以集装箱综合利用率最大化为优化目标,构建铁路集装箱混合货物平衡装载布局优化模型;区别于直接将货物构造为货物块的方法,给出了一种基于混合货物分类方法和待装货物结构判断指标的货物块单元构造方法,并设计一组货物块单元选择和放置方法及剩余空间更新规则,提出铁路集装箱混合货物平衡装载布局优化算法。算例结果表明:所提方法在保证集装箱装载空间容积和载重量的平均综合利用率不低于87%的同时,有92.8%和97.87%以上的概率满足装载重心平衡和集重容许弯矩约束,可有效提高货物块与剩余空间适配度,客观反映装载空间利用情况,并达到平衡装载要求,为铁路集装箱货物装载布局提供决策支持。  相似文献   

19.
平地上高速列车的风致安全特性   总被引:6,自引:1,他引:5  
为研究高速列车在强侧风作用下安全行驶问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用该模型计算了不同风向角、不同风速和不同车速下作用于车体上的侧风气动载荷.根据高速列车整车试验规范,以脱轨系数、轮重减载率、轮轴横向力和轮轨垂向力为运行安全指标,分析了头车、中间车和尾车的运行安全性.研究表明:头车的安全性最差,且风向角为90°时,横风情况下最危险.随着车速的增大,最大安全风速急剧减小.当车速为200km/h时,最大安全风速为29.61 m/s;当车速为400 km/h时,最大安全风速为18.87m/s.  相似文献   

20.
为研究高速列车在强横风作用下通过曲线桥梁的安全性问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用所建立的模型计算了不同风速、不同车速、不同线路条件下作用于车体上的气动载荷,并且以脱轨系数、轮重减载率、倾覆系数、轮轴横向力和轮轨垂向力为运行安全性指标,分析了高速列车通过曲线桥梁的运行安全性.研究表明:横风下高速列车通过曲线桥梁时,列车的安全性受气动力和曲线超高双重影响.在低风速、低车速时,曲线超高对于列车安全性的影响起主要作用;随着风速变大,气动力对于列车安全性的影响远大于曲线过超高对于列车安全性的影响.在各工况中,当风从曲线桥梁的内侧吹向外侧,并且高速列车运行在曲线桥梁的迎风侧时,高速列车的最大安全风速最小,因此,在校核横风下高速列车过曲线桥梁安全性时,可以直接选用该工况来校核列车的安全性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号