首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为了解机车在牵引工况下轮轨的蠕滑特征,本文采用线性蠕滑理论和非线性修正方法,推导出轮轨接触的蠕滑力公式,结合磨耗型踏面的轮轨接触几何特征,采用Simpack多体动力学软件建立DF8B型三轴转向架机车动力学模型,进行动力学仿真验证。研究发现:传统转向架机车在牵引工况通过曲线时,导向轮对外侧车轮轮缘根部接触钢轨,总的蠕滑力处于饱和状态;当轮轨接触总的蠕滑力饱和时,牵引力会引起轮轨接触界面的纵向和横向蠕滑力重新分配,牵引力越大,纵向蠕滑力越大,横向蠕滑力越小。惰行工况下导向力矩最大,随着牵引力的增加,导向轮对的导向力矩逐渐减小。  相似文献   

2.
为分析机车牵引力对轮轨关系的影响,在SIMPACK多体动力学软件中分别建立了基于60钢轨和60N钢轨的"机车-轨道"耦合动力学模型,设定了水平轨道和坡道通过曲线的2种工况,分析机车牵引力与轮轨蠕滑关系、最大法向接触应力和RCF损伤系数的关联度。计算结果表明:增加牵引力使轮轨纵向蠕滑率和纵向蠕滑力迅速增加,横向蠕滑力降低,机车在60N钢轨上运行时变化尤为明显;钢轨内侧纵向蠕滑力受牵引力作用方向改变,引起钢轨内侧裂纹方向改变;相比60钢轨,60N钢轨抵抗磨耗的能力较强,但容易产生滚动接触疲劳。  相似文献   

3.
基于ALE (Arbitrary Lagrangian Eulerian)有限元建立稳态轮轨滚动接触的三维有限元模型.利用该模型计算和分析重载轮轨滚动接触的黏着特性,并研究不同速度等级对重载轮轨黏着蠕滑特性的影响.用该模型对重载大功率机车车轮在轨道上从制动、惰行到牵引过程进行计算,得到了这一过程中轮轨接触状态的变化规律和黏着特性曲线.在重载大功率机车从制动、惰行到牵引的过程中,轮轨纵向摩擦力由反方向饱和状态逐渐转变成牵引方向饱和状态,而轮轨横向摩擦力始终呈反对称性分布,其最大值位置先是逐渐靠近接触斑中心,然后又逐渐远离之;摩擦力矢量呈旋转分布,其方向从与运动方向相反逐渐变为与运动方向相同,其旋转中心从轮缘附近逐渐进入接触斑,随后又逐渐向轮缘一侧移动;当轮轨纵向蠕滑率较小(≤0.003)时,黏着力随纵向蠕滑率的增加而近似线性增加,但运行速度对此影响不大;进入大蠕滑率(>0.003)区域后,黏着力随蠕滑率的增加而减小,并且速度越高,黏着力降低得越快.  相似文献   

4.
基于Kalker三维滚动接触精确解方法,针对由高速铁路轨面不平顺引起的周期性激励问题,以单一方向简谐波动蠕滑率激励下蠕滑力特征研究为基础,考虑了随时间变化的轮轨接触弹性位移梯度效应以及更加复杂的轮轨蠕滑工况,拟合相应的非稳态传递函数,研究了不同方向蠕滑率同时存在的非稳态滚动接触问题。结果表明:使用非稳态滚动接触模型计算所得蠕滑力相对蠕滑率存在相位滞后,蠕滑率简谐波动波长比越小,蠕滑力幅值增益减小程度越大,相位滞后越多;使用非稳态传递函数方法与Kalker三维滚动接触精确解方法计算时,蠕滑力幅值和相位均具有较好的一致性;在简谐波动纵向蠕滑率激励时,横向蠕滑率的增大会减小纵向蠕滑力的幅值增益,但对纵向蠕滑力的相位滞后影响不大;在简谐波动横向蠕滑率激励时规律基本一致。  相似文献   

5.
针对我国30 t轴重重载技术体系中还没有30~33 t轴重内燃机车的现状,基于25 t轴重HXN3机车技术平台,提出33 t轴重内燃机车分别采用三轴传统转向架和三轴径向转向架2种基本方案。建立机车发挥牵引力时的动力学模型,通过理论分析和数值仿真研究机车曲线通过时导向轮对车轮横向蠕滑率的特点及其对纵向黏着力的影响,并基于总蠕滑率的考虑给出曲线黏着计算公式。针对大半径、小半径两类曲线,对比研究径向转向架和传统转向架通过曲线时导向轮对左右侧车轮黏着系数和蠕滑率的特点,揭示采用径向转向架对改善曲线黏着的优势。研究结果可为今后我国研制大轴重、高黏着内燃机车转向架提供参考。  相似文献   

6.
钢轨润滑以及轨顶摩擦控制是重载铁路减轻钢轨侧磨以及伤损的有效措施之一。本文对比分析不同摩擦系数条件下,机车的曲线通过性能。分析结果表明,曲线外股钢轨轨距角处的润滑,有利于减小轮轨磨耗,与此同时,减小了机车的蠕滑导向力矩,从而增大了导向轮轮对冲角,轮轨横向力亦呈现增大趋势;曲线内轨轨顶摩擦系数适当减小对减小轮轨横向力起到积极作用。轮轨纵向蠕滑系数的增大,可明显提高轮对导向力矩,有利于轮对趋于径向位置,并减小横向力和轮对冲角,使得机车的曲线通过性能得到显著改善。  相似文献   

7.
变摩擦系数条件下的轮轨滚动接触特性分析   总被引:3,自引:0,他引:3  
采用mixed Lagrangian/Eulerian方法建立轮轨滚动接触有限元模型,在轮轨间使用与滑动速度相关的变摩擦系数定义切向接触属性,改变轮对角速度定义轮轨接触不同工况。在轮轨蠕滑工况下,通过对比取常系数摩擦系数和变摩擦系数的计算结果发现:变摩擦系数对轮轨滚动接触最大接触应力和接触斑面积影响较小;但是对轮轨接触斑内最大Mises应力、最大纵向切应力、最大横向切应力和蠕滑力影响较大,特别是对最大纵向切应力和蠕滑力影响幅度近20%;对轮轨滚动接触蠕滑力矢量分布的影响也应值得注意。不同工况时轮轨蠕滑率不同,变摩擦系数条件下的轮轨蠕滑力和剪切应力随蠕滑率增大而增大,当轮轨间出现完全滑动时,轮轨蠕滑力达到极限。  相似文献   

8.
针对柔性轨道下因谐波磨耗车轮激励而引发钢轨和轮对振动时的轮轨蠕滑问题,在分析柔性轨道下轮轨间滚动接触振动对轮轨蠕滑特性影响机理的基础上,基于CRTS型双块式无砟轨道和CRH2型高速列车,采用ANSYS和UM软件建立柔性轨道下高速列车的动力学数值模型;选取6种典型谐波磨耗(阶数分别为1,6和11阶;对应波深分别为0.1和0.3mm)车轮,进行轮轨滚动接触振动特性、轮轨蠕滑力和蠕滑率的分析。结果表明:车轮谐波磨耗阶数和波深的增加均导致钢轨垂向加速度、轮对垂向加速度、轮轨垂向力及轮轨蠕滑力和蠕滑率的大幅增加,且与阶数的影响相比,波深对滚动接触蠕滑特性的影响更大;当车轮的谐波磨耗取11阶和0.3mm波深时,轮轨垂向力最大值、钢轨垂向加速度最大值、轮对垂向加速度最大值和平均值、纵向蠕滑率平均值、纵向蠕滑力绝对平均值、横向蠕滑力最大值、纵向蠕滑力最大值分别约为车轮无谐波磨耗时的7.27,49.6,20.35,15.18,7.8,9.064,6.7和8.57倍;考虑柔性轨道后,轮轨接触脱离时间明显增加,轮轨蠕滑率和蠕滑力也有明显增大。  相似文献   

9.
为研究高速客车转臂式轴箱定位转向架通过曲线时的蠕滑导向性能,基于多体系统动力学及车辆的稳态曲线通过理论,分析曲线上轮对的受力特点,采用动力学软件SIMPACK计算转向架高速通过曲线轨道时的导向蠕滑力,研究转臂结构参数对转向架运动状态和轮轨蠕滑力的影响。计算结果表明,转向架以欠超高状态通过曲线时,随着转臂长度和相对于轨面倾角的增加,转臂回转导致前轮对正向摇头角明显增大,产生更大的轮轨横向蠕滑力,使轮对向曲线内侧偏移,轮对横移量逐渐由负值变为正值;后轮对正的摇头角则不断减小,横向蠕滑力随之下降,受前轮对影响,后轮对向曲线内侧移动;转臂长度超过0.2m后,转臂长度及倾角均会对转向架曲线通过性能产生明显的影响。  相似文献   

10.
基于列车纵向动力学理论和车辆—轨道耦合动力学理论,建立考虑钩缓系统中车钩纵向、横向和垂向作用力的重载列车—轨道耦合动力学模型。以机车牵引万吨列车为考核工况,分析牵引和制动时机车的受力特点,研究牵引力、制动力及车钩力对机车运行性能的影响过程和影响程度,并对理论模型进行试验验证。结果表明:在牵引、电制动及紧急制动工况下,直线线路上机车的轮重分别较惰行工况降低了约13,7和4kN,单纯的牵引或制动力可降低轮轨横向蠕滑力,间接造成轮轨横向力的小幅增大,但轮轴横向力基本不变;车钩力可通过车钩摆角产生横向分量,并传递到轮轨界面,改变轮轴横向力的整体变化趋势;若车钩偏转3°,在电制动工况下,前部机车承受的压钩力较大,引起的轮轴横向力增幅达18kN,在紧急制动工况下,机车上的压钩力幅值小,引起的轮轴横向力在8kN以内。  相似文献   

11.
交叉杆式自导向转向架动力学性能分析   总被引:2,自引:0,他引:2  
对交叉杆式自导向转向架在日本通勤车上的适用性进行了分析.研究结果表明,在自导向转向架一系悬挂水平定位刚度降为普通转向架对应刚度一半的情况下,仍能保证同样水平的车辆运行稳定性.通过小半径曲线时,其轮对冲角和轮轨横向力均比普通转向架小得多.当轮轨摩擦系数增大时,其效果更为显著.  相似文献   

12.
轮对自由横动量对2C_0机车轮缘磨耗的影响   总被引:3,自引:2,他引:1  
轮对自由横动量的大小关系到机车曲线通过时的轮缘磨耗情况,同时对钢轨的磨损也有很大的影响。文章对机车运用中轮对自由横动量对轮缘磨耗的影响作简要论述,并在建立了两种2C0径向转向架机车模型的基础上,通过在小半径曲线上的仿真计算,分析了轮对自由横动量的变化对机车曲线通过时与轮缘磨耗有关的指标值(主要包括外轮导向力、摇头角以及轮缘磨耗)的影响。得出合理的轮对自由横动量的设置可以延长轮对的使用寿命的结论,为轮对自由横动量的设置提供了一定的理论依据。  相似文献   

13.
随着我国铁路五次大提速的进行,列车的运行速度有了较大的提高,但随之而来的是导致部分提速机车的横向动力学性能的恶化。而在某些速度下,机车的横向振动问题比较严重,已经影响了机车运行速度的进一步提高。为了满足铁路继续提速的要求,进一步改善机车的横向动力学性能已成为当务之急。本文针对SS9型机车在线路试验时出现的问题进行了分析,发现一系横向定位刚度不足是导致机车横向振动剧烈的主要原因。现车所采用的轴箱拉杆不能提供机车提速运行时所必需的横向定位刚度值,对轴箱拉杆进行改进后,机车的非线性稳定性得到提高,直线运行的轮轴横向力和平稳性得到很大改善,并通过线路试验得到验证。同时,由于轮轨动态作用大为改善,对机车长期运用中保持良好稳定的动力学性能、提高悬挂部件的可靠性并延长使用寿命非常有利。  相似文献   

14.
采用弹性与刚性架承式驱动装置的机车横向性能比较   总被引:5,自引:2,他引:3  
从改善我国架承式驱动装置的机车横向动力学性能的目的出发,采用多体动力学软件SIMPACK建立某机车的动力学模型,比较了不同线路等级、运行速度和一系横向刚度下,刚性架承式和弹性架承式机车横向平稳性能,发现采用弹性架承式可以显著降低横向轮轨力,改善机车的横向性能和电机工作条件,减小机车对线路和参数变化的敏感性;同时还比较了不同一系纵向刚度下,刚性架承式和弹性架承式驱动装置的机车稳定性,说明采用弹性架承式驱动装置可以提高机车的稳定性。  相似文献   

15.
轮对纵向振动问题是一个长期以来被忽略的内容,研究发现轮对纵向振动虽然对整车的横向稳定性影响不大,但却对整车的垂向动力学性能和轮轨动态作用力有很大的影响。进一步分析发现,剧烈的轮对纵向振动,与轨道的横向和高低不平顺有关。在光滑的轨道上不会发生纵向共振。提出通过改变一系垂向减振器的布置方式可以抑制轮对的大部分纵向振动,减小轮轨动态作用力,延长轮对和钢轨的使用寿命。  相似文献   

16.
建立柔性耦合单轮对走行系统的曲线通过模型。分析轮对冲角、脱轨系数和磨耗指数等主要性能指标与耦合连接横向、回转刚度等参数的关系,给出相应的连接参数设计原则。研究表明,柔性耦合轮对可以实现几乎纯径向的曲线通过,轮对曲线性能的耦合回转刚度的优化与单轮对系统的二系悬挂、车辆定距和耦合轮对轴距等参数有关,在优化耦合连接回转刚度的基础上,可以通过提高耦合连接的横向刚度来增加铰接车组的运动稳定性。  相似文献   

17.
车轮踏面外形对机车曲线通过性能的影响   总被引:6,自引:0,他引:6  
不同的轮轨外形配合,对机车曲线通过性能的影响较大。本文采用仿真软件SIMPACK建立一种2Co径向转向架机车模型,通过在小半径曲线上的仿真计算,分析了不同车轮踏面外形对机车曲线通过性能的影响。得出合理的车轮踏面与钢轨外形配合可以提高机车车辆的曲线通过性能的结论。  相似文献   

18.
大功率机车轮轨接触应力计算分析   总被引:1,自引:0,他引:1  
轮轨关系是大功率机车车轮国产化的重要研究内容。轮轨接触应力分析是轮轨接触问题的基础。大功率机车轮对在运行过程中相对钢轨断面产生不同横移,直接影响轮轨接触应力。应用轮轨非线性接触理论及并行计算技术,构建大功率机车轮轨接触应力分析的大规模有限元模型,并在中国科学院研究生院计算地球动力学实验室的网络集群并行计算环境下完成有限元计算,研究了轮对横移量对大功率机车轮轨接触应力影响。计算结果表明,轮对不同横移时,车轮踏面内均出现塑性变形,塑性变形从车轮踏面内约6 mm处延伸至接触表面。轮轨接触斑的横向长度与接触面积随轮对横移量的变化有着相同的变化规律。随着横移量的改变,多数情况下的轮轨接触斑形态与Hertz理论的椭圆假设有较大差别。  相似文献   

19.
根据转向架结构理论分析和动力学仿真计算,对3D轴焊接构架式转向架通过曲线时重车轮轨横向力偏大的原因进行分析。认为3D轴焊接构架式转向架的主、副摩擦面摩擦系数偏大,使重车通过曲线时斜楔处于卡死状态,轮对轴箱纵向呈刚性定位,从而导致重车过曲线时轮轨横向力偏大。提出只要将斜楔副摩擦面的摩擦系数减小至0.1左右,则在轮轨纵向蠕滑力的作用下,轴箱斜楔纵向就不会被卡死,而且轮对纵向定位刚度只由轴箱弹簧提供,可以有效地降低重车过曲线时的轮轨横向力。线路动力学试验证明理论分析和仿真计算的结果是正确的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号