首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据国内外有关资料,提出了适合我国高速地铁隧道压力控制的标准,通过数值分析,给出了高速地铁隧道内典型位置的压力变化及控制处理方法.  相似文献   

2.
深圳地铁 11 号线隧道空气压力波研究   总被引:2,自引:0,他引:2       下载免费PDF全文
分析并提出高速地铁隧道压力舒适度标准.采用隧道压力波分析软件ThermoTun,对深圳地铁11号线隧道段不同断面设计情况下的压力波及压力舒适度进行分析,提出对隧道泄压系统及隧道断面的设计建议.  相似文献   

3.
高速动车组新型压力控制装置   总被引:1,自引:1,他引:0  
与常规的主动式和被动式压力保护装置不同,新型高速动车组用压力控制装置采用主动式和被动式相结合的双电机驱动装置实现车内压力控制,通过隧道和隧道交会试验,验证了新型压力控制装置抑制车外压力波动的能力,形成了高速动车组车内压力控制新型技术平台.  相似文献   

4.
针对高速地铁列车通过隧道区间风井扩大段时引起的乘客耳感不适,依托某带隧道风井的地铁线路区间及设计时速120 km的8车编组地铁列车,以ATO运行模式开展实车试验;在确保试验可重复性的基础上,探究列车站间运行时各车厢内外压力变化规律,分析区间风井扩大段引起车内外压力突变的原因。结果表明:车头和车尾先后高速通过风井段时,相当于经历了隧道断面面积先扩大再缩小的变化过程,会形成类似于车头和车尾驶出和进入隧道洞口的物理现象,车头、车尾通过区间风井扩大段会导致车外压力的上升、下降,此时产生的压力突变是导致耳感不适的主要原因;尾车至头车的车外压力正峰值和负峰值全程呈上升趋势,头车和尾车压力变化峰峰值接近,分别为1 617和1 723 Pa,5车压力变化峰峰值最小,为964 Pa;列车通过区间风井扩大段时,车内压力变化幅值受运行速度的影响较大,速度为113 km·h-1时,任意3和1 s内的车内压力变化幅值均超过相应标准中的耳感舒适性要求。  相似文献   

5.
为了将地铁瞬变压力的波动控制在人体舒适度范围内,根据三维不可压缩Navier-Stokes方程和标准k-ε紊流模型,以22.73 m2的地铁区间矩形隧道为研究对象,建立隧道-列车-空气数值模型,分析地铁隧道中列车特征部位压力和压力梯度的变化规律和影响因素。研究结果表明:列车运行速度超过100 km/h后,有必要在地铁入口处设置缓冲结构;缓冲结构降低压力最大值的效果并不显著,但降低压力梯度最大值的效果显著;喇叭型缓冲结构是优选的地铁入口降压措施;缓冲结构的最佳长度为2倍隧道水力直径;缓冲结构的横断面积越大,其降压效果越好;缓冲结构的最佳开孔率为30%左右。  相似文献   

6.
为了研究时速140km/h高速地铁列车以不同运行方式在隧道中运行时的气动效应,采用三维、可压、非定常N-S方程的数值计算方法,对地铁列车由明线驶入隧道及站间运行时产生的气动效应进行数值模拟,分析不同运行方式对高速地铁隧道气动效应的影响。研究结果表明:列车站间运行时,车体表面测点压力峰峰值沿车长方向基本不变;而列车由明线驶入隧道时,车体表面测点压力峰峰值从头车向尾车逐渐降低。2种运行方式下的隧道壁面测点压力峰峰值均在中间风井处达到最小值。并且列车由明线驶入隧道时的最大车体表面和隧道壁面压力峰峰值分别为列车站间运行时的1.37倍与1.49倍。不同列车密封指数下,列车由明线驶入隧道时的车内压力变化均大于列车站间运行时的车内压力变化。因此,地铁列车由明线驶入隧道时的空气动力学效应比站间运行时更加不利。  相似文献   

7.
参考高速铁路隧道压力波研究理论及方法,结合地铁工程特点,计算了在不同车速及隧道断面下的压力波及压力变化梯度,给出了深圳地铁11号线隧道断面的建议值。  相似文献   

8.
通过对我国某型地铁列车进行隧道空气动力学实车线路试验,得到地铁列车实际运行过程中车内、外压力变化规律。试验结果表明:该型地铁列车车内压力变化满足我国地铁设计规范舒适度评价标准及美国地铁人体舒适度评价标准。地铁列车运行过程中,最长隧道区间的车内、外压力变化幅值明显大于其它隧道;列车以不同速度和模式运行中,车内1.0 s、1.7 s、3.0 s时的压力变化幅值和车外各测点压力变化幅值均不相同,车体表面测点压力变化由车头至车尾方向呈逐渐减小的趋势。  相似文献   

9.
地铁列车通过隧道时的气动性能研究   总被引:1,自引:0,他引:1  
列车通过隧道时引起的空气动力效应会对列车运行的安全性、乘客乘坐的舒适性等产生不良影响。基于列车空气动力学理论,采用计算流体力学软件FLUENT对某型号地铁车辆通过最不利长度隧道时的空气动力学性能进行数值模拟,得到并分析了地铁列车和隧道壁面监测点的压力时程曲线和分布特征。研究表明:车体表面压力峰峰值、3 s内车内压力波动最大值及隧道内附属物压力峰峰值,与列车速度的平方近似成线性关系;隧道断面净空面积越小,车体承受的压力越大;地铁列车通过隧道时需限速,以达到人体舒适性评价标准。  相似文献   

10.
时速160 km、200 km列车通过隧道时产生的压力波研究   总被引:7,自引:0,他引:7  
余南阳 《铁道建筑》2003,(12):29-31
采用一维、可压缩、非定常流动理论及特征线法发展了准高速、高速列车通过隧道时引起压力波动的数值模拟方法,据此研究列车通过单线隧道和两列车在双线隧道内相会时压力波的变化规律,根据舒适度判据,得出合适的单线和双线隧道断面积,供新线隧道断面设计参考。  相似文献   

11.
高速列车通过隧道时隧道内压力变化的试验研究   总被引:2,自引:0,他引:2  
通过以空气为流体的高速列车模型试验,研究高速列车通过隧道时产生的压力变化.试验结果表明了隧道内产生的压力变化与列车速度、阻塞比之间的关系.  相似文献   

12.
针对地铁列车在隧道内的运行特点,采用FLUENT(6.3.26)三维模拟软件,在列车最高运行速度120 km/h的条件下,对列车进出隧道洞口、在隧道内匀速运行、进出站及加减速运行、经过中间风井等多个运行场景的压力波及压力变化率进行模拟分析,提出地铁列车在隧道内运行压力波和压力变化率规律,以及在给定压力舒适度标准下的最大隧道阻塞比。  相似文献   

13.
高速列车通过隧道时产生的瞬变压力场和舒适度标准   总被引:1,自引:0,他引:1  
本文从分析高速列车通过隧道时空气压力的瞬变,影响压力变化的因素,列车风和车厢内的压力变化出来,简述了一些国家制订的乘客听觉舒适度标准。  相似文献   

14.
为研究快速地铁列车在隧道内运行时的“列车-隧道”耦合空气动力特性,在杭海城际铁路开展实车试验,分别对列车以100 km/h与120 km/h的速度通过隧道时的车内外压力变化情况进行研究,计算压力峰-峰值、3 s压力变化幅值与1.7 s压力变化幅值,对比列车进隧道与出隧道过程中车内外压力变化情况,分析不同车辆编组位置与不同列车运行速度对车内外压力变化的影响,研究空调机组状态与车内压力变化幅值之间的关系。研究结果表明,快速地铁列车进出隧道过程中压力变化幅值相近;列车进入隧道并在隧道内运行时,尾车车内压力变化速率最快,车外压力峰-峰值从头车向尾车逐渐减小,而车内压力峰-峰值沿车长方向基本不变;当列车速度不同时,车内外压力对比应在无量纲时间下进行,随着列车速度的增大,车内外压力峰-峰值增大,压力变化速率加快;关闭空调机组可以显著减小车内压力变化速率,可为乘客舒适性研究提供参考。  相似文献   

15.
介绍了空气压力波对快速地铁线路乘客舒适性的影响,对东莞地铁二号线隧道建设和列车制造过程中所采取的压力波缓解措施、投入运营后的乘客体验以及测试结果进行了说明,为后续快速地铁线路设计提出了建议。  相似文献   

16.
基坑施工对盾构隧道的影响分析   总被引:1,自引:0,他引:1  
运用同济大学曙光软件,采用荷载结构法和盾构隧道修正惯用法,以广州地铁黄沙车站上建设物业商住发展项目为研究背景,计算了隧道外壁侧向土压力、水位降、土层基床系数和隧道上方超载四种因素不同组合工况下的隧道结构受力,分析了基坑施工对紧邻地铁盾构隧道的影响.研究结果表明,影响紧邻盾构隧道受力的最主要因素为隧道外壁侧向土压力释放程度,当外壁侧向土压力由静止土压力进入主动土压力状态,将导致隧道弯矩增大143%,并致使管片开裂,环缝接头张开增量1.36 mm,影响隧道正常使用,在其它不利因素共同作用下,将危及隧道结构安全.  相似文献   

17.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

18.
隧道空气压力波浅水槽拖动模型试验的实时检测   总被引:16,自引:0,他引:16  
实时检测是浅水槽拖动模型试验模拟高速列车在隧道内运行时空气压力波变化的关键技术,本文对这一问题进行了深入研究,成功地研制了实时检测系统,并取得了满意的试验效果,对隧道压力波的试验研究具有重要的应用价值。  相似文献   

19.
高密度行车时隧道风压对屏蔽门开关的影响   总被引:1,自引:0,他引:1  
针对地铁隧道通风压力对站台屏蔽门关门力的影响,采用SES软件,从活塞风井的设置形式,对正常运行工况下隧道内的通风压力进行了模拟计算分析。结合列车位置分析了高密度行车时高峰运营工况下的隧道内通风压力的分布,并给出了其对屏蔽门关门力的影响与建议解决方案。  相似文献   

20.
高速列车在隧道内运行时,车外的压力变动会引起列车车内压力的变动,从而带来乘客感觉舒适性问题。为解决这一问题需要采取压力保护等措施,而计算列车车内压力波动是必不可少的基础性工作。利用流入流出单节密封车厢的流量关系,以连续换气方式和截止阀方式为例,模拟了列车在安装这两种装置时隧道单车压力波与会车压力波条件下的车内压力波动规律,验证了计算方法在计算车内压力方面的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号