首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对某款SUV在60 km/h行驶时的路噪轰鸣声问题,对路噪机理进行分析,运用多参考分析的传递路径分析(TPA)方法进行路噪识别;将测试载荷谱输入CAE仿真模型,利用CAE仿真手段进行结构优化,结合工艺及实施性等因素,选出最优方案用于实车优化,通过测试与仿真相结合的方法解决路噪轰鸣声问题。  相似文献   

2.
传动系统扭振引起的车内低频轰鸣声,一直是汽车NVH领域的难点和热点问题。针对某型三缸机中型多用途汽车的中油门加速,在1400-2000r/min发动机转速时的车内低频轰鸣声问题,基于半消声室转鼓试验研究,运用相关性分析方法,锁定了传动系扭振为该问题的激励源,并通过传递路径分析,识别了前风挡玻璃与一阶空腔模态的受迫/耦合共振,是导致车内空气压力脉动升高并产生低频轰鸣声的主要原因。通过车身传递路径的优化,降低了车内低频轰鸣声2-4dB(A),显著提升了加速工况的车内声品质,为车内低频轰鸣声问题的优化提供了指导。  相似文献   

3.
车内低频轰鸣声的控制,一直是汽车NVH领域研究的热点和难点。文章针对某车型的喇叭工作时引起的车内低频轰鸣声,运用传递路径分析和模态试验的方法,识别出车辆右前大灯为噪声源。通过对前大灯车身定位/安装孔位置的分析、优化和调整,有效避免了前大灯的安装模态偏移,从而完全消除了喇叭工作时引起的车内低频轰鸣声问题的复现。本研究对车内异响问题的激励源识别和问题解决提供了指导。  相似文献   

4.
在纯电动汽车开发过程中,如何有效基于有限元手段实现低频结构路噪的预测与优化,对纯电动汽车NVH性能具有重要意义。文章基于Spindle Loads方法对某型纯电动SUV汽车在大粗糙路60km/h工况下的低频结构路噪进行仿真预测,通过与实车测试结果对比,显示低频结构路噪有限元模拟结果与试验结果曲线整体趋势一致性较好;对53Hz与127Hz风险频率点原因进行剖析并提出相关优化方案,实车验证有效。  相似文献   

5.
针对某多用途汽车(MPV)车型开发过程中存在的低频路噪轰鸣问题,通过整车传递路径以及响应分析,确定轰鸣问题由路面激励与尾门模态耦合引起。文章研究了尾门限位块刚度、尾门动力吸振器、尾门复合车身解决方案(CBS)的优化效果,最终选用增加尾门CBS方案解决了低频路噪轰鸣问题,有效提升车辆行驶中的乘车品质。  相似文献   

6.
本文首先对某款MPV车型T2'与T2'数据的制动噪声进行加速、路噪、怠速带载载荷分析.三种载荷下的弱点分析及优化,寻找车身方案,T2'模型方案对比T2'模型方案,车身方案在不同载荷下的验证,减重方案,有效的解决了整车路噪低频压耳声的问题.  相似文献   

7.
针对某试验车后排右侧乘员处低频轰鸣声的特性及传递路径灵敏度进行了分析,确定发动机的2阶振动是该低频轰鸣声的主要贡献,是通过发动机的后悬置点传递到车身而引起的。提出了安装动力吸振器来减小发动机后悬置点处对振动传递的方法,并通过锤击试验和整车道路模拟试验表明,在该车前副车架后悬置点处安装动力吸振器,能够有效抑制其发动机转速为2 040 r/min时后排产生的低频轰鸣声。  相似文献   

8.
纯电动车电驱总成刚体模态频率较传统燃油车的动力总成刚体模态频率高,容易与底盘以及车身模态耦合,发生共振,引起路噪低频轰鸣声。目前较多的电动车为了降低电驱啸叫,提高电驱的隔振率,电驱采用二级隔振系统。二级隔振系统有两个共振峰和一个反共振峰,相对于单级隔振系统增加了共振的风险,但可以利用反共振峰降低副车架的振动。本文通过三个不同的样车,分别做不同工况的路噪测试,研究电驱刚体模态与路噪的关系,并总结得到电驱总成在整车上的模态需要与轮胎和车身模态避频,而在轮胎激励力较大的频率处,可以将电驱设计成吸振器,降低车架的振动,从而降低路噪响应。  相似文献   

9.
针对某SUV车型在3档WOT工况车内排气噪声及轰鸣声的问题,分别从空气噪声与结构噪声两方面对其排气系统和车身进行了问题排查,随后优化了消声器的低频消声能力并增强了三号吊钩车身端局部动刚度,最后通过试验验证了优化方案的可行性。  相似文献   

10.
某车型在加速工况、车速90~110 km/h、发动机转速1 600~1 900 r/min范围内,存在60 Hz左右的后排低频轰鸣声问题。通过模态分析、面板贡献量分析及NTF(Noise Transfer Function,噪声传递函数)分析等仿真分析及试验手段,从传递路径方面,提出车身后轮罩处声腔填充隔断材料方案,有效地降低了车内后排轰鸣声。  相似文献   

11.
本文阐明了乘用车车内轰鸣声的产生机理,并介绍了轰鸣声的分析与控制方法。文中按照"激励源-传递路径-响应"的分析思路,对某SUV车型的车内轰鸣声进行了详细的试验与分析,找出了该车车内轰鸣声的主要问题。针对该车高转速车内轰鸣声过大的问题,重点分析了前减振塔及加强横梁、前围防火墙、前风挡玻璃对其车内轰鸣声的影响程度。通过优化前围与前风挡玻璃支撑刚度,降低车身振动,有效地缓解了高转速段的车内轰鸣声问题。通过本文的试验与分析,为高转速段车内轰鸣声的改善提供了成功的解决方案和改进措施,具有较大的工程参考价值。  相似文献   

12.
多连杆后悬系统有较好的操控性能,但有可能产生路噪问题。文章所述带多连杆后副车架的车型较同平台扭梁版车型有明显的120 Hz路噪轰鸣声。通过车身连接点动载荷计算和传递路径分析,发现后弹簧托臂到车内的传递路径贡献最大。通过加强车身板件、在后弹簧托臂加装动力吸振器和加强副车架横梁,最终将路噪峰值大幅降低。早期通过对悬架系统的建模和动载荷分析,可以快速识别关键传递路径,有针对性地进行结构优化。  相似文献   

13.
针对纯电汽车底盘悬架力传递导致的中低频路噪问题,本文采用整车有限元分析和Spindle Loads激励力的分析方法,在60km/h工况下进行路噪的多输入多输出仿真计算,发现主要是由后副车架模态引起的力传递过大导致。试验表明,设计并安装与车内噪声中心频率(152Hz)对应的吸振器后,能有效降低车内路噪。最后将后副车架柔接后,车内前排和后排噪声分别降低了0.2dB (A)和3.8dB (A),验证了仿真计算的准确性。  相似文献   

14.
针对某乘用车在粗糙路面存在120 Hz频率的路噪问题,从路噪产生的机理、传递路径、关键影响因子和控制方法着手,利用贡献量及传递路径分析方法识别到多连杆后悬架关键传递路径及零部件,并结合有限元及DOE设计方法寻找到关键子系统优化变量参数,发现优化后可有效改善该路噪问题,最终,通过样件改制在实车上验证了优化方案的有效性,为...  相似文献   

15.
某SUV量产车型售后客户抱怨发动机转速3000~4000rpm时车内加速噪声大,通过主观评价及客观数据分析发现该转速段内存在轰鸣声。借助模态试验和仿真相结合的方法分析了轰鸣声的形成原因,识别了轰鸣声的主要传递路径,确认了副车架模态对车内轰鸣声的影响。通过采用在前挡板和纵梁连接处增加支架的优化方案,有效解决客户抱怨的车内加速噪声大的问题。  相似文献   

16.
为了克服传统传递路径分析方法工作量大、效率低的问题,将工况传递路径分析(OTPA)运用于路噪优化,形成基于工况传递路径分析的路噪优化方法。首先推导了工况传递路径的基本原理,并将重相干性分析与奇异值分解用于工况传递路径分析以保证其计算准确性;其次,将工况传递路径分析应用于路噪优化,形成系统的分析方法;最后将该方法运用于解决某电动车路噪问题,快速排查出主要原因并提出有效的优化方案,成功将声压级峰值降低了1.9 dB(A)以上,验证了该方法的可行性与实用性。  相似文献   

17.
根据轰鸣声产生的机理,分析了某型轿车乘坐室内轰鸣声的特性、发动机隔振特性、乘坐室各壁板的振动特性以及顶棚模态试验和空腔声学模态,明确了该轰鸣声主要是由发动机二阶振动通过悬置传递到车身,并激励乘坐室顶棚结构振动和空腔声学模态耦合所致.提出了采用加强顶棚刚度来改变顶棚结构振动的固有频率并抑制其振幅的方法,以此削弱耦合作用.试验结果表明,该方法可有效控制轰鸣声.  相似文献   

18.
随着物流时效性加快,大马力牵引车需求日益增加,动力系统引发的振动噪声也随之加剧。本文基于试验与仿真结合的方法对某牵引车在1000~1100r/min严重轰鸣声问题进行了研究分析。通过对结构噪声及辐射噪声排查分析,排除了结构传递贡献,确认问题机理为排气系统辐射噪声耦合驾驶室前顶盖模态引发轰鸣声。该牵引车排气系统增加副消音器可消除该轰鸣声。该问题解决思路对此类轰鸣声故障排查有重要参考意义。  相似文献   

19.
针对某乘用车车内轰鸣声进行问题分析,查找出抗扭拉杆是该车内轰鸣声的主要传递路径,根据理论设计出动力吸振器,并通过试验验证了动力吸振器对车内轰鸣声问题的改善效果。结果表明,改善后轰鸣声满足设定目标。并且,本文总结出一种传递路径分析新方法,该方法可弥补断开路径法和加质量块方法的不足。  相似文献   

20.
传统汽车结构路噪开发体系主要是基于TPA(Transfer Path Analysis)思想,没有贯穿从路面到人耳的整个路径,不够完善。为完善汽车结构路噪开发体系,文中结合SPR(Source-Path-Receiver)模型和TPA分析思想提出路噪分解公式并运用于路噪开发体系中,进行路噪控制分析、路噪目标设定及完整的子系统目标分解。相较于传统路噪开发体系,该路噪开发体系将管控范围扩大到轮胎、悬架和隔振系统,使开发体系更完整;通过科学的目标设定和子系统目标分解过程使目标体系更合理和平衡,提高结构路噪开发体系的深度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号