首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
车辆电磁制动方案刍议   总被引:1,自引:1,他引:0  
结合机车车辆制动系统的运行情况,对电磁制动系统进行了初步探讨.提出了两种电磁制动方案:单电磁铁失电制动和双电磁铁得电制动.方案能够初步解决电磁制动系统中的一些技术难点,如减轻闸瓦间隙消除过程中闸瓦与车轮间的机械碰撞、电磁力的计算与控制、制动力的放大与传递等.  相似文献   

2.
针对动车组部分车辆制动系统故障后,采取切除故障车辆制动力的处理方式,从安全防护曲线的生成与实际制动过程的角度出发,对在完全监控模式下的列车防护算法及制动过程进行仿真。分析单限速区段和多限速区段速度防护曲线的算法和切除部分制动力后实际制动曲线与速度防护曲线的关系,找到触发各类制动的转换点,对切除不同比例制动力后实际制动曲线进行仿真,得出不同坡度和制动初速度下、切除不同比例制动力时的制动距离。针对动车组因故障切除部分制动力后,产生过走距离,存在冒进信号点的可能,参照防护曲线生成机理,给出兼顾制动力故障的ATP安全防护方法,分析按该方法运行时对通过能力的影响。  相似文献   

3.
制动系统是动车组关键技术之一,制动控制系统是制动系统的核心部分。在充分借鉴我国动车组成熟经验的基础上,提出一种动车组制动控制系统设计方案,分别介绍了其组成、功能原理、制动力分配方式,对动车组制动系统的设计具有重要的借鉴意义。  相似文献   

4.
介绍了EP2002制动控制系统的组成、特点、安装方式、制动力分配方式和控制原理,并与常规的制动控制系统进行了比较.对制动系统的安全性设计进行了分析,为车辆的可靠运营提供了安全保障.  相似文献   

5.
为了在高速区有效操纵列车,无论列车长度如何都需要控制系统能够提供稳定的制动力.在设计制动控制系统过程中,由于粘着和制动材料的摩擦系数变化而导致的模型不确定性是一个需要首先考虑的问题.提出利用滑模控制原理设计一种全新防滑控制系统.相比于常规控制方式,仿真结果证明,在非线性制动动力学方面,基于滑模控制的防滑控制系统具有良好的性能.  相似文献   

6.
针对2万t组合列车存在的主控机车和从控机车通信信号延迟问题,基于多体动力学理论,建立了考虑通信延迟的列车纵向动力学仿真分析模型,仿真分析了列车在12‰长大下坡道循环制动过程中通信延迟对纵向冲动的影响规律和不同机车电制动力下通信延迟对纵向冲动的影响。结果表明:列车纵向拉钩力和压钩力均随着通信延迟的增大而增大,而且最大压钩力位置随通信延迟增大向车尾方向移动;通信延迟对负向加速度影响较为明显,即对于中部机车,其负向加速度随通信延迟的增大而增大;对于前部和后部货车,随通信延时增大其局部位置车辆负向加速度波动较大;在列车制动过程中通信延迟对纵向冲动的作用受机车电制动力影响较小,而在缓解过程中,机车电制动力越小,通信延迟对列车纵向冲动作用越显著。  相似文献   

7.
介绍了2种应用在和谐电力机车基于时间的制动控制器和基于位置的制动控制器.重点介绍了2种司机制动控制器的结构组成和控制原理.时间闸是一种自动制动控制器,其制动力的控制与时间有关,可实现初制、全制、紧急制动等功能,操纵简单可靠.位置闸将自动制动控制器与直通制动控制器集成在一起,其制动力与制动手柄所处的位置有关,有初制位、全制位、抑制位、重联位、紧急制动位等,具有良好的功能性,安全可靠.  相似文献   

8.
制动控制电磁阀为轨道交通车辆制动系统关键执行部件。在制动过程中,电磁阀接收电子控制单元的控制信号,通过反复动作实现对制动压力的控制。这要求控制信号与电磁阀的动态特性要相互匹配,保证压力的控制精度,同时达到降低电磁阀动作次数、延长使用寿命的目的。因此,在开发过程中对制动控制电磁阀动态响应特性进行研究是必要的且具有重要意义。采用电磁仿真模块建立电磁阀动态仿真模型,分析电磁阀得电和断电过程中电磁阀线圈内电流和铁芯动作位移等参数的变化趋势;通过试验方法测试电磁阀得电和断电过程中电流响应特性与压力响应特性;搭建试验环境完成了3 000万次寿命测试及过程中的电磁阀响应稳定性测试。研究结果表明,制动控制电磁阀的电流响应时间小于11 ms,仿真和实测电流变化趋势一致;按照标准GB/T 22107测试的压力响应时间小于15 ms,且随动作次数增加至3 000万次的测试过程中,压力响应时间均在15 ms以内,稳定性好,可以满足制动控制系统的使用要求。本文研究结果可为电磁阀控制算法设计提供参考。  相似文献   

9.
为了给实际动车组制动控制系统的研发和技术改进提供测试和验证平台,在对制动控制系统原理及制动功能分析的基础上,以CRH2动车组中一动一拖基本制动单元为对象,通过分析制动控制装置的输入输出信号,完成了制动控制系统半实物仿真平台硬件系统的设计和构建,以及制动控制相关的所有功能软件的设计;并经过软硬件系统的联合调试,有效实现了列车制动过程的半实物仿真运行。试验结果表明,所设计平台能够模拟实际运行环境,能够准确而较为真实地反映动车组的制动控制性能,达到了预期目标。  相似文献   

10.
研究了全自动新型市域快速轨道交通车辆的制动性能。根据牵引电机的特性曲线合理设计出减速度曲线及各级制动力对应的减速度值,详细介绍了制动各级位下电制动力和空气制动力的分配策略,且验证了纯空气制动时,任何工况下制动盘和闸片的热负荷能力。  相似文献   

11.
国产韶山Ⅰ型电力机车自131号起控制系统电压改为110伏。为此重新设计、试制新控制电源屏。可控硅制动励磁电源屏自装32号、92号机车使用以来,效果较好。现决定从131号车起正式使用。新设计试制的制动励磁电源屏控制方式为恒定励磁电流调节,制动电流(即制动电阻电流)最大值限制。具有操作方便、快速稳定等特点。  相似文献   

12.
空电联合制动是一种新的制动技术.由于其工况和所需条件相对复杂,需要一种中继装置用于转化、记录变化的压力信号为易于传输、控制的电模拟信号,文章研究、设计了一种压差转换装置,该装置能精确用于电力机车空电联合时空气制动力信号控制电制动力大小.  相似文献   

13.
大闭环控制方式的城市轨道交通列车制动控制系统,以既有的城市轨道交通列车制动系统为基础,加以适当改造,构建大闭环,通过对减速度的精确控制实现对城市轨道交通列车制动力的精确控制。介绍并比较分析了大闭环控制方式的列车制动控制系统与既有列车制动控制系统的构成、主要功能和作用原理,从理论上推断出大闭环控制方式的城市轨道交通列车制动控制系统能够显著改善列车的制动品质,实现列车精准定点停车。  相似文献   

14.
阐明直线电机运载系统的产生背景、构成和工作原理,重点分析在直线电机运载系统开放的电磁环境下,信号系统车载设备和轨旁设备的电磁兼容性问题。论述为了充分发挥直线电机运载系统的优越性.应在坡道的启动控制、车辆的制动控制、小半径曲线控制、牵引力波动控制、感应板电流过载防护等方面注意信号系统与相关专业的接口,并应根据道岔类型为信号系统配置合适的转辙设备。  相似文献   

15.
保持制动在动车组进站停车时自动施加,启动自动缓解,施加/缓解过程完全自动化,控制、检测、诊断逻辑复杂,智能化程度较高。保持制动与传统动车组坡起制动控制方式相比,大大简化了司机站间停车及启动的操作难度。本文系统介绍高速动车组保持制动设计的功能要求、系统原理、制动力设计和试验方法,重点阐述控制信号定义、正常模式和故障模式下保持制动施加、缓解控制逻辑以及诊断逻辑。  相似文献   

16.
针对一列比例为1∶10的铝合金动车组运动模型车,在其轨道两侧排布极性交替变化的电磁铁,利用涡流作用力实现模型车的平稳制动及导向.在研究涡流制动技术的基础上,进行了运动模型车制动系统的建模.通过对电磁铁极距分别为100 mm和400 mm两种情况进行分析,得出了切向制动力随速度的增大而先增大后减小,法向排斥力随速度的增大而始终保持增大的结论.根据仿真特性曲线计算得出了制动时间及制动距离,为进一步的制动装置设计提供了参考数据.  相似文献   

17.
列车通信网络质量是直接影响城轨车辆架控制动系统控制功能和行车安全的关键因素,研究网络通信失效模式的控制策略是提高制动系统性能的必然要求。文章以6编组城轨车辆为例,阐述了架控制动控制系统网络的组成原理,并构建制动力分配控制策略设计流程,对不同通信故障模式下的制动控制策略进行分析,最后针对制动系统设计给出相关建议。  相似文献   

18.
在电磁超声检测中,针对磁致伸缩换能器换能效率低,接收到的信号通常十分微弱的问题,设计了一个在激励线圈和功率放大器之间的阻抗匹配电路,使之可以在30~150 kHz内的能量传输效率增大。通过Smith圆图法确定元器件数值并用阻抗变换得到的公式去验证,设计出阻抗匹配网络。该网络可以增大传输功率,提高激励线圈上的电流。仿真和实验结果表明:增加阻抗匹配电路,可以有效提高激励电流,进而增加电磁力,使得磁致伸缩效果明显,功率传输效率有效提高。  相似文献   

19.
目前高铁列控车载设备在控车时主要考虑车辆在最不利工况下的制动性能,而不能根据车辆制动性能动态调整控车策略。本文研究在现有车载设备控制曲线制动模型的基础上,增加制动力切除信息,来动态调整控制曲线,以使控制曲线仍不超过列车真实制动性能,保障行车安全,并有效提升车载设备的运行效率。  相似文献   

20.
高速动车组与内燃、电力机车等传统牵引动力设备有显著区别,其控制、制动系统的设计理念体现出操作简便和导向安全的原则,在转向架结构、车体轻量化、列车动力分配、电传动控制技术、列车信息网络及制动系统都包含独特的核心技术。现对CRH2型动车组制动系统特性谈一些粗浅的看法。一、制动模式针对性强,趋于智能化CRH2型动车组的制动系统具有多种制动控制方式,可以满足不同运行条件下对列车制动的需求。行车中,动车组制动控制装置能接受列车信息网络或司机操纵动作等指令,进行常用制动、快速制动、紧急制动、耐雪制动等相应的制动动作。1.常用制动特性。常用制动的制动力共分为7级,行车操纵中使用机会最多。系统在制动时自动进行延迟充气控制,M车(动车)上产生的电气再生制动除满足本车制动力要求外,多余制动力用来代替T车(拖车)的一部分制动力,T车制动力不足时则由其空气制动力补充,从而维持本制动单元(一个动车和一个拖车构成一个制动单元)所需要的制动力,并实现和保持规定减速度。另外制动系统还具有空、重车载荷适应功能,制动力能够自动按需变化,维持一定的减速度。2.快速制动特性。动车组的快速制动功能,具有比常用制动高1.5倍的制动力。在司机操作制动手柄...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号