首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
白晓宏  李俊霖 《公路》2022,67(3):165-169
猫道作为大跨度空间柔性结构,是悬索桥上部结构施工重要的操作平台,结构体系对风荷载较为敏感,与传统设置抗风缆的猫道相比,现今悬索桥猫道均采用无抗风缆的多跨连续式猫道,因此抗风稳定性问题就成为猫道设计的关键。对猫道抗风稳定性研究以往均基于风洞试验,对稳定性数值分析理论研究较少,以重庆万州新田长江大桥猫道为例,对猫道进行线性和非线性屈曲分析,总结猫道结构体系布置原则,给出极限荷载限值,为类似工程提供依据。  相似文献   

2.
南京第四大桥悬索桥施工猫道采用无抗风缆无制振索3跨连续结构,索塔上预埋件少,调整猫道线形方便.猫道承重索、门架承重索及猫道扶手索通过猫道门架组成空间整体结构共同受力.通过计算并调整,使猫道线形与主缆空缆线形平行,满足施工需要,承重索张力安全系数满足规范要求.采用节段模型风洞试验与有限元计算相结合的方法,对猫道抗风稳定性进行分析.研究表明,增加横向通道数量,可以提高猫道抗风稳定性;而制振索对猫道抗风稳定性影响较小;非静力风及絮流场不控制猫道抗风稳定性分析.  相似文献   

3.
武汉杨泗港长江大桥为主跨1 700 m的单跨双层钢桁梁悬索桥,猫道采用三跨连续式无抗风缆猫道结构体系,猫道中跨跨度1 700 m.猫道主要结构包括猫道承重索、门架支承索、扶手索、猫道面层、猫道门架系统、横向天桥、猫道索转向系统以及锚固调节系统等.猫道面宽4.0m;猫道承重索由10根φ56 mm钢丝绳组成,通过精轧螺纹钢...  相似文献   

4.
悬索桥施工猫道的抗风缆系统   总被引:3,自引:0,他引:3  
贾宁  刘健新 《中外公路》2006,26(3):168-170
介绍抗风缆系统的构造形式,计算分析构造形式和尺寸对制振效果的影响。设置抗风缆系统后,猫道的刚度明显提高;外张式抗风缆系统对控制猫道侧向振动效果明显。抗风缆系统的制振效果与构造形式和尺寸有关。  相似文献   

5.
为研究各类抗风措施对提高大跨度人行悬索桥抗风稳定性的贡献,以某主跨430m的人行单跨悬吊地锚式悬索桥为背景,利用杆系有限元程序建立模型,对基本结构以及采用空间缆、增大梁重、拓宽梁端桥面、设置抗风缆等措施下,人行悬索桥的动力特性及抗风稳定性进行了分析。结果显示:颤振临界风速是人行悬索桥的设计控制风速;拓宽加劲梁梁端宽度,基本不能提高结构抗风稳定性;同时增大梁段重量150%和设置抗风缆对抗风稳定性的提升效果较好,均可达到30%以上;设置抗风缆后,明显提高了结构的竖弯基频和扭转基频,但也增加了养护和维修成本,影响桥下空间利用。  相似文献   

6.
大跨径悬索桥无抗风缆猫道动力特性分析   总被引:4,自引:3,他引:1  
采用理论建模和ANSYS有限元预应力索结构模态分析的研究方法,对大跨径悬索桥无抗风缆猫道动力特性进行了研究,理论推导了无抗风缆猫道1阶竖向、侧向和扭转振动频率公式,数值分析了桥塔、矢跨比、横向天桥、材料性能及联结索等参数对猫道振动特性的影响.结果表明:桥塔对猫道自振频率影响很小;猫道的振动频率随着矢跨比的增加而呈减小的趋势;横向天桥的位置和个数对猫道低阶频率影响很小,对高阶频率有一定影响;平行索对猫道频率几乎无影响,交叉索对猫道低频影响很小,对扭转频率有一定提高;CFRP与钢承重绳猫道的自振频率差别不大,却能大大降低对卷扬机等施工机具的要求.  相似文献   

7.
南京长江第四大桥主桥为主跨1 418m的双塔三跨悬索桥,全桥设置2幅猫道作为主缆施工平台,在主缆主要施工作业完成后需拆除猫道。猫道按照猫道面层、变位钢架、猫道索顺序拆除。猫道面层先采用卷扬机拆除门架处型钢横梁,然后由塔顶向中跨跨中和锚碇方向,边、中跨同步拆除底网和侧网。面层拆除后,用塔吊或汽车吊拆除塔顶两侧和锚碇前方的变位钢架。猫道索拆除按照猫道承载索、扶手索、门架承重索的顺序进行,内侧猫道索下放至主缆内侧钢桥面上拆除,外侧猫道索下放至吊索外桥面检修道上拆除。拆除的猫道索采用收绳架分段收绳、上盘后运输至后场存放。  相似文献   

8.
为研究不同抗风缆布置形式对人行悬索桥静风稳定性的提升效果,以某主跨为380 m双塔地锚式人行悬索桥为例,分别对其采用不同的抗风缆布置形式,并通过有限元进行了动力特性分析;对设置了不同形式抗风缆的人行悬索桥进行了静风稳定性和位移响应分析。分析结果表明:设置空间抗风缆对结构竖弯基频提升明显;空间斜拉式抗风缆对人行悬索桥抗风稳定性作用效果较好;空间直拉式抗风缆更有助于减少加劲梁受风荷载后的侧向位移。  相似文献   

9.
润扬大桥悬索桥猫道系统设计与施工   总被引:2,自引:0,他引:2  
在以往国内外大跨度悬索桥施工中,多采取设置抗风索的措施来提高猫道的抗风稳定性。为加快施工进度和降低费用,对润扬大桥猫道采取调整横向通道的间距和数量的方法来保证其整体抗风稳定性,并增设水平和竖向制振装置减小猫道在活荷载作用下的振动。系统介绍了悬索桥猫道系统的设计与施工。  相似文献   

10.
红星坪悬索桥桥梁总长232 m,主桥为双塔单跨悬索桥,主跨为222 m,垂跨比1/10.2;桥面宽度6 m,净宽4.8 m。索塔采用钢筋混凝土塔柱;主缆及抗风缆锚碇采用重力锚;加劲梁采用分离式钢箱梁,上、下游设置抗风缆。通过详细阐述人行悬索桥的总体设计要点,结构设计关键节点,为后续类似项目提供指导。  相似文献   

11.
大连部滨海大道工程为主跨460m的三跨钢桁架悬索桥,主缆由五跨组成,由东向西依次为:东锚跨、东边跨、中跨、西边跨、西锚跨。猫道是主缆架设施工中的最主要的施工设施,担负着诸如索股牵引、索股调整、主缆紧固、索夹及吊索安装、主缆缠丝、防护涂装等重要任务。本文通过研究本工程猫道的设计与施工,阐述了海上悬索桥猫道的设计及架设方法,为公司从事以后类似工程提供依据。  相似文献   

12.
以珠江黄埔大桥南汊悬索桥为工程背景,对大跨度悬索桥施工猫道的设计特征、抗风性能和整体施工过程进行研究.结果表明,取消抗风缆,增加横向天桥和水平与竖向押振绳,在不影响通航的条件下,能保证良好的抗风能力和整体稳定性,加快猫道施工进度.最后介绍猫道安装工艺流程及关键安装工序:导索过江、托架支承索架设及承重绳架设.  相似文献   

13.
宜昌市庙嘴长江大桥大江桥为250m+838m+215m的单跨简支钢板结合梁悬索桥。介绍了该桥上部结构设计,指出了影响板式加劲梁悬索桥抗风稳定性的主要因素,提出了改善抗风性能的相应措施。结果表明,这些措施提高了大江桥加劲梁的抗风稳定性,使其满足规范要求。大江桥主缆和吊索在国内首次全部采用镀锌铝合金高强钢丝。采用有限元程序对该桥进行静力计算,计算结果表明,各项指标均满足规范要求。  相似文献   

14.
王传福  杨定军 《公路与汽运》2023,(1):107-110+115
挪威哈罗格兰德大桥为空间主缆斜索面悬索桥,在主缆索股安装期间猫道设计为整幅式,考虑到当地风速很大,专门为该猫道设计一套抗风系统。文中介绍该猫道抗风系统的构造,通过有限元计算和风洞试验分析其承载能力、抗风性能,简述其安装和拆除施工工艺。  相似文献   

15.
设计参数对吊拉组合体系桥抗风性能的影响分析   总被引:1,自引:1,他引:0  
为给吊拉组合体系桥的抗风设计提供理论依据,以1 400 m主跨的吊拉组合体系桥设计方案为例,采用三维非线性空气静力和动力稳定性分析方法,系统地分析了各主要设计参数包括主缆矢跨比、吊跨比、边跨长度、斜拉索索面布置形式以及边跨辅助墩设置等对吊拉组合体系桥抗风性能的影响,并探讨了其合理的取值范围.  相似文献   

16.
至喜长江大桥大江桥为主跨838m的结合梁悬索桥,主缆索股采用预制平行钢丝束股法制作。主缆施工采用3跨连续式猫道,猫道在两边跨呈八字形。猫道面宽4.0m,每条设6根48mm钢丝绳。锚碇前端设置转向架,改变猫道索锚固位置,使上、下部结构可同时施工。采用有限元法对猫道进行计算,确保猫道结构满足要求。施工过程中,采用拖轮水下过渡法使先导索过江,先导索过江后,塔顶横移先导索,将门架支承索过江,并安装承重索、猫道面网、侧网等。在猫道面架设完成后,通过锚碇处的千斤顶和塔顶转向鞍座处的导链,对猫道线形进行整体调整,使猫道线形满足施工要求。  相似文献   

17.
以在建主跨为1080m的三塔双跨悬索桥--泰州长江公路大桥为工程背景,采用三维非线性空气动力稳定性分析方法,分析主缆矢跨比、加劲梁恒载集度、加劲梁支承方式、中塔型式、缆索体系等结构参数对三塔悬索桥空气动力稳定性的影响,并探讨了具有良好抗风稳定性的三塔悬索桥的结构布置形式.结果表明:三塔悬索桥主缆的矢跨比在1/10~1/11范围内,主梁跨中设置刚性中央扣,增强中间桥塔的纵桥向刚度以及采用空间缆索体系或平面双缆体系时,可以获得较好的空气动力稳定性.  相似文献   

18.
抗风缆对新疆赛桥静风稳定性控制的有效性研究   总被引:1,自引:0,他引:1  
新疆赛吾达格尔大桥采用45°斜拉式抗风缆,用简支弹性梁的Rayleigh近似法计算基频;在不同风速下用有限元计算抗风缆施加前后主梁跨中横、竖向位移以及扭转角度,考察抗风缆对大跨悬索桥静风稳定性控制的有效性。结果表明:抗风缆能显著提高桥梁结构的固有频率,产生十分有效的抗风效果。  相似文献   

19.
温州瓯江北口大桥主桥为主跨2×800m的三塔双层桥面钢桁梁悬索桥,上层通行6车道高速公路,下层通行6车道一级公路。针对该桥多塔、大跨、双层桥面的特点,对其支承体系、加劲梁、中塔及其基础设计关键技术进行研究。基于结构受力合理性以及运营安全等因素,该桥支承体系采用纵向在加劲梁梁端设置阻尼器;竖向在桥塔及边墩处设置竖向支座,并对桥塔处进行压重;横向在加劲梁与塔柱间设置抗风支座。综合考虑运输及安装、抗风稳定性、使用功能及经济性等因素,加劲梁采用正交异性钢桥面板与主桁结合的整体式钢桁梁,全桥4跨连续。为节省造价、降低后期维养工作量,中塔采用纵向A形钢筋混凝土结构,在中塔主缆鞍槽中设置多道竖向隔板,以提高主缆钢丝与鞍槽间的摩擦力,保证主缆抗滑移安全。为提高结构刚度、降低造价,中塔基础采用防撞能力强的大型沉井基础。  相似文献   

20.
湖北燕矶长江大桥集高速公路与城市道路功能为一体,该桥采用单孔跨越通航水域和断裂带的主跨1 860 m双层桥面钢桁梁悬索桥方案。大桥邻近机场,航空限高导致桥塔高度受限、主缆垂跨比偏小、主缆规模偏大。为解决上述问题,提出一种新的不同垂度四主缆悬索桥结构体系,该体系主要特征为:4根主缆横向对称分两侧布置,同侧2根主缆采用不同垂度,加劲梁间隔交错悬吊于2组不同垂度的主缆上,不同垂度主缆按纵向前、后错开锚固于地锚。该体系降低了单根主缆规模,抗风稳定性较好,位于外侧的下主缆的跨中段可降低到桥面之下以增大垂度,较好地解决了桥塔高度受限的建设难题。基于该体系,大桥上主缆跨度布置为(550+1 860+450) m,跨中垂度142.445 m;下主缆跨度布置为(510+1 860+410) m,跨中垂度153.345 m。大桥缆索采用镀锌-铝合金镀层高强钢丝,加劲梁主桁采用华伦式桁架,锚碇采用可换式预应力锚固系统,桥塔采用门楼造型,基础采用钻孔桩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号