首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas(SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%–30% by volume(%vol.), normal diesel oil(4%–5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted(or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.  相似文献   

2.
This article explores the possibilities of inedible biodiesel as a viable and environmentally friendly substitute fuel for marine diesel engines in India. This article encompasses on various crucial elements, including engine compatibility, biodiesel blends, fuel quality, emissions reduction, regulatory compliance, cost analysis, environmental advantages, and research and development. Implementing biodiesel in maritime operations within India presents favourable opportunities for mitigating carb...  相似文献   

3.
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation(FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine’s output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors(and many others).  相似文献   

4.
In this paper, the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector. Two blends with 80% diesel/20% butanol and 60% diesel/40% butanol mixed by volume were tested in this study. The pure diesel B0 was also tested here as a reference. The spray penetration, flame lift-off length, and soot optical thickness were obtained through high-speed schlieren imaging, OH<...  相似文献   

5.
In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.  相似文献   

6.
Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions. From that point, an extension of previous simulation researches is presented to calculate the amount of SO_x emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used. The variations of SO_x emissions are computed in g/k W·h and in parts per million(ppm) as functions of the optimized parameters: brake specific fuel consumption and the amount of air-fuel ratio respectively.Then, a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SO_x emissions as functions of engine speed and load. These developed non-dimensional equations can be further used directly to assess the value of SO_x emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.  相似文献   

7.
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4%–5%.  相似文献   

8.
The lifecycle greenhouse gas(GHG) emissions(Well-to-Wake) from maritime transport must be reduced by at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris Agreement(2015). A transition from conventional fuels to alternative fuels with zero or lower GHG emissions is viewed as the most promising avenue to reach the GHG reductions. Whereas GHG and toxic pollutants emitted from the use of fossil fuels(heavy fuel oil(HFO) and marine gas/diesel oil(MGO/MDO)) are generally...  相似文献   

9.
Significant aerodynamic engine instability can occur during the operation of marine gas turbines as airflow enters the compressor through a 90° turning and causes inlet distortion. This study adopts the method of simulating board equivalence to provide the target distortion flow field for ship compressors. The characteristics of the flow field behind the simulated board are obtained through experiments and numerical simulations, through which the relationship between the height of the simulated ...  相似文献   

10.
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.  相似文献   

11.
WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China's diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.  相似文献   

12.
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.  相似文献   

13.
In this study, a one-dimensional simulation was performed to evaluate the performance of in-cylinder combustion to control NOx emissions on a four-stroke, six-cylinder marine medium-speed diesel engine. Reducing the combustion temperature is an important in-cylinder measure to decrease NOx emissions of marine diesel engines. The Miller cycle is an effective method used to reduce the maximum combustion temperature in a cylinder and accordingly decrease NOx emissio...  相似文献   

14.
The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.  相似文献   

15.
An aircraft tractor plays a significant role as a kind of important marine transport and support equipment. It’s necessary to study its controlling and manoeuvring stability to improve operation efficiency. A virtual prototyping model of the tractor-aircraft system based on Lagrange’s equation of the first kind with Lagrange mutipliers was established in this paper. According to the towing characteristics, a path-tracking controller using fuzzy logic theory was designed. Direction control herein was carried out through a compensatory tracking approach. Interactive co-simulation was performed to validate the path-tracking behavior in closed-loop. Simulation results indicated that the tractor followed the reference courses precisely on a flat ground.  相似文献   

16.
Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.  相似文献   

17.
Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.  相似文献   

18.
A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-concept (EDC) model to simulate the combustion and with discrete ordinates model to simulate radiation. The numerical results show that the flow field characteristics and the parameter distributions are under the condition of rich fuels, and these results provide valuable information when optimizing the plasma generator design and organizing its flow fields.  相似文献   

19.
An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495 diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.  相似文献   

20.
A new generation conical spray system for conventional diesel engines or premixed combustion diesel engines is introduced. By means of oriented impingement method, flexible spray penetration in design is realized. High-speed photograph was used to investigate the spatial distribution characteristics of the new spray for cases of different impingement angles and needle valve opening pressures. The results show that, by applying spray impingement orientation, fuel jets spread along the cone surface as shape of sectors, so the dispersion of jets is increased obviously. Changing on impingement angle leads to variation of penetration, which is critical in homogeneous mixture preparation. Due to the flexibility of spray penetration in design, the spray impingement on liner is avoided in a great extent. The results also indicate that higher needle valve opening pressure results in longer penetration and larger spray angle after impingement. Combustion characteristics of the impinged conical spray were studied in the 1135 type diesel engine. The new impinged conical spray system work smoothly in full load range with better fuel economy and lower emissions of NOx and soot than the original test engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号