首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Demand for housing in Malaysia grew noticeably in 1960s and expanded rapidly in the late 1980s and beyond as a result of rapid urbanization. The same scenario repeats itself in Iskandar Malaysia, a southern development corridor located in Johor, Malaysia where close to three hundred housing developments have been launched from pre-1980s to 2000s. These housing developments are believed to have undergone a layout design evolution affecting land use distribution, road network design, density and many other neighborhood metrics. Thus, this study investigates the impact of housing development designs on vehicle miles traveled (VMT) as they evolve over the decades. Evolution in layout design is discussed in terms of the 4Ds of urban form factors: density, diversity, design (street connectivity and intersection density) and destination accessibility (proximity). Twenty four housing areas developed within decades of pre-1980s to the 2000s were selected and travel diaries of their randomly selected households were recorded. The results obtained show that urban form and demographic factors explain almost 87% of the variances in household VMT and the three main design factors influencing VMT are housing density, proximity index (destination accessibility) and diversity index. The findings of the study show that there is a decreasing trend in density, (land use) diversity, connectivity and destination accessibility of the housing areas. While the results obtained confirm the prevalent theory on the relationship between neighborhood design and VMT, unfortunately for the study area the average VMT has been increasing with the recent housing areas.  相似文献   

2.
    
This paper proposes an integrated econometric framework for discrete and continuous choice dimensions. The model system is applied to the problem of household vehicle ownership, type and usage. A multinomial probit is used to estimate household vehicle ownership, a multinomial logit is used to estimate the vehicle type (class and vintage) choices, and a regression is used to estimate the vehicle usage decisions. Correlation between the discrete (number of vehicles) and the continuous (total annual miles traveled) parts is captured with a full variance–covariance matrix of the unobserved factors. The model system is estimated using Simulated Log-Likelihood methods on data extracted from the 2009 US National Household Travel Survey and a secondary dataset on vehicle characteristics. Model estimates are applied to evaluate changes in vehicle holding and miles driven, in response to the evolution of social societies, living environment and transportation policies.  相似文献   

3.
    
Automated vehicles represent a technology that promises to increase mobility for many groups, including the senior population (those over age 65) but also for non-drivers and people with medical conditions. This paper estimates bounds on the potential increases in travel in a fully automated vehicle environment due to an increase in mobility from the non-driving and senior populations and people with travel-restrictive medical conditions. In addition, these bounding estimates indicate which of these demographics could have the greatest increases in annual vehicle miles traveled (VMT) and highlight those age groups and genders within these populations that could contribute the most to the VMT increases. The data source is the 2009 National Household Transportation Survey (NHTS), which provides information on travel characteristics of the U.S. population. The changes to light-duty VMT are estimated by creating and examining three possible travel demand wedges. In demand wedge one, non-drivers are assumed to travel as much as the drivers within each age group and gender. Demand wedge two assumes that the driving elderly (those over age 65) without medical conditions will travel as much as a younger population within each gender. Demand wedge three makes the assumption that working age adult drivers (19–64) with medical conditions will travel as much as working age adults without medical conditions within each gender, while the driving elderly with medical any travel-restrictive conditions will travel as much as a younger demographic within each gender in a fully automated vehicle environment. The combination of the results from all three demand wedges represents an upper bound of 295 billion miles or a 14% increase in annual light-duty VMT for the US population 19 and older. Since traveling has other costs besides driving effort, these estimates serve to bound the potential increase from these populations to inform the scope of the challenges, rather than forecast specific VMT scenarios.  相似文献   

4.
    
In the context of sustainable urban transport in developing countries, individuals’ travel behavior faces multiple factors which influence their mobility patterns. Recognizing these factors could be a favorable method to organize more regular and sustainable trip patterns. This study aims to identify the less well-known lifestyle along with more popular built environment as the main factors which shape travel behaviors. Employing data from 900 respondents of 22 urban areas in city of Shiraz, Iran, this paper explores travel behaviors as non-working trip frequencies by different modes. Results of structural equation model indicate a strong significant effect of individual’s lifestyle patterns on their non-working trips. However, built environment impact on travel behavior is small compared to lifestyle. Besides, other variables such as travel attitudes and socio-economic factors stay crucial in the mode choice selection. These findings indicate the necessity of regarding lifestyle orientations in travel studies as well as objective factors such as land use attributes.  相似文献   

5.
    
This paper proposes a model system to forecast household greenhouse gas emissions (GHGEs) from private transportation. The proposed model combines an integrated discrete-continuous car ownership model with MOVES 2014. Four modeling components are calibrated and applied to the calculation of GHGEs: vehicle quantity, vehicle type and vintage, miles traveled, and rates of GHGEs. The model is applied to the Washington D.C. Metropolitan Area. Three tax schemes are evaluated: vehicle ownership tax, purchase tax and fuel tax. We calculate that the average GHGEs per vehicle is 5.15 tons of carbon dioxide-equivalent (CO2E) gases. Our results show that: (a) a fuel tax is the most effective way to reduce vehicle GHGEs, especially for households with fewer vehicles; (b) a purchase tax reduces vehicle GHGEs mainly by decreasing vehicle quantity for households with more vehicles; and (c) an ownership tax reduces vehicle GHGEs by decreasing both vehicle quantity and miles traveled.  相似文献   

6.
    
Household vehicle miles of travel (VMT) has been exhibiting a steady growth in post-recession years in the United States and has reached record levels in 2017. With transportation accounting for 27 percent of greenhouse gas emissions, planning professionals are increasingly seeking ways to curb vehicular travel to advance sustainable, vibrant, and healthy communities. Although there is considerable understanding of the various factors that influence household vehicular travel, there is little knowledge of their relative contribution to explaining variance in household VMT. This paper presents a holistic analysis to identify the relative contribution of socio-economic and demographic characteristics, built environment attributes, residential self-selection effects, and social and spatial dependency effects in explaining household VMT production. The modeling framework employs a simultaneous equations model of residential location (density) choice and household VMT generation. The analysis is performed using household travel survey data from the New York metropolitan region. Model results showed insignificant spatial dependency effects, with socio-demographic variables explaining 33 percent, density (as a key measure of built environment attributes) explaining 12 percent, and self-selection effects explaining 11 percent of the total variance in the logarithm of household VMT. The remaining 44 percent remains unexplained and attributable to omitted variables and unobserved idiosyncratic factors, calling for further research in this domain to better understand the relative contribution of various drivers of household VMT.  相似文献   

7.
    
Increasing CO2 emissions from the transport sector have raised substantial concerns among researchers and policy makers. This research examines the impact of the built environment on individual transport emissions through two mediate variables, vehicle usage and vehicle type choice, within a structural equation modelling (SEM) framework. We find that new-urbanism-type built environment characteristics, including high density, mixed land use, good connectivity, and easy access to public transport systems help reduce transport CO2 emissions. Such mitigating effect is achieved largely through the reduced vehicle miles travelled (VMT) and is enhanced slightly by the more efficient vehicles owned by individuals living in denser and more diverse neighborhoods, all else being equal. Our research findings provide some new evidence that supports land use policies as an effective strategy to reduce transport CO2 emissions.  相似文献   

8.
    
Widespread adoption of plug-in electric vehicles (PEVs) may substantially reduce emissions of greenhouse gases while improving regional air quality and increasing energy security. However, outcomes depend heavily on the electricity generation process, power plant locations, and vehicle use decisions. This paper provides a clear methodology for predicting PEV emissions impacts by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts of vehicle production and use and Texans’ exposure to emissions are also computed and monetized. This study reveals to what extent PEVs are more environmentally friendly, for most pollutant species, than conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision and other manufacturing processes. Results indicate that PEVs on today’s grid can reduce GHGs, NOx, PM10, and CO in urban areas, but generate significantly higher emissions of SO2 than existing light-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy security benefits of electrified vehicle-miles endure. As conventional vehicle emissions rates improve, it appears that power grids must follow suit (by improving emissions technologies and/or shifting toward cleaner generation sources) to compete on an emissions-monetized basis with conventional vehicles in many locations. Moreover, while PEV pollution impacts may shift to more remote (power plant) locations, dense urban populations remain most strongly affected by local power plant emissions in many Texas locations.  相似文献   

9.
    
This study explores the relationship between historical exposure to the built environment and current vehicle ownership patterns. The influence of past exposure to the built environment on current vehicle ownership decisions may be causal, but there are alternative explanations. Households may primarily select to live in neighborhoods that facilitate their vehicle ownership preferences, or they may retain preferences that they have developed in the past, irrespective of their current situations. This study seeks to control for these alternative explanations by including the built environment attributes of households’ past residences as an influence on vehicle ownership choices. We use a dataset from a credit reporting firm that contains up to nine previous residential ZIP codes for households currently living in the 13-county Atlanta, Georgia, metropolitan area. Results show that past location is significant, but of marginal influence relative to the attributes of the current location. From a practical perspective, our results suggest that models that include current but not past neighborhood attributes (also controlling for standard socioeconomic variables) can forecast vehicle ownership decisions reasonably well. However, models that include both current and past neighborhood attributes can provide a more nuanced understanding of the built environment’s potentially causal influences on vehicle ownership decisions. This better understanding may provide more realistic forecasts of responses to densification or other travel demand management strategies.  相似文献   

10.
    
Autonomous vehicle (AV) technology holds great promise for improving the efficiency of traditional vehicle sharing systems. In this paper, we investigate a new vehicle sharing system using AVs, referred to as autonomous vehicle sharing and reservation (AVSR). In such a system, travelers can request AV trips ahead of time and the AVSR system operator will optimally arrange AV pickup and delivery schedules and AV trip chains based on these requests. A linear programming model is proposed to efficiently solve for optimal solutions for AV trip chains and required fleet size through constructed AVSR networks. Case studies show that AVSR can significantly increase vehicle use rate (VUR) and consequentially reduce vehicle ownership significantly. In the meantime, it is found that the actual vehicle miles traveled (VMT) in AVSR systems is not significantly more than that of conventional taxis, despite inevitable empty hauls for vehicle relocation in AVSR systems. The results imply huge potential benefits from AVSR systems on improving mobility and sustainability of our current transportation systems.  相似文献   

11.
    
‘Vehicle miles traveled’ (VMT) is an important performance measure for highway systems. Currently, VMT [or ‘annual average daily traffic’ (AADT)] is estimated from a combination of permanent counting stations and short-term counts done at specified locations as part of the Highway Performance Monitoring System (HPMS) mandated by the US Federal Highway Administration. However, on some roadway sections, Intelligent Transportation Systems (ITS) such as detectors and cameras also produce traffic data. The question addressed in this paper is whether and under what conditions ITS systems data could be used instead of HPMS short-term counts (called ‘coverage counts’)? This paper develops a methodology for determining a threshold number of missing daily traffic counts, or alternatively, the number of valid ITS data observations needed, in order to confidently replace the HPMS coverage counts with ITS data.

Because ITS counts, coverage counts, and actual ground counts (e.g. continuous counts) cannot be found coexisting on a roadway section, it is hard to compare them directly. In this paper, the Monte Carlo simulation method is employed to generate synthetic ITS counts and coverage counts from a set of relatively complete traffic counts collected at a continuous count station. Comparisons are made between simulated ITS counts, coverage counts, and actual ground counts. The simulation results indicate that when there are<330 daily traffic counts missing in a set of ITS counts in a year, that is, when there are at least 35 days of valid data, ITS counts can be used to derive a better AADT than using coverage counts. This result is applied to calculate the VMT for the Hampton Roads region in Virginia. The comparison between the VMTs derived with using and not using the threshold number indicates that these two VMTs are significantly different.  相似文献   

12.
This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-equation model of aggregate demand for vehicle kilometers traveled, vehicle stock and fuel efficiency. Price and income elasticities obtained are broadly consistent with those reported in the literature. Among other results, an increase in the fuel price of 10% would reduce driving by ~2% in the long term and by 1% the average fuel consumption rate. Estimates of the short- and long-term rebound effects are ~8 and 20%, respectively. We also find that an increase in the gross domestic product per capita of 10% would cause an increase in driving distance of 2–3% and an increase of up to 4% in vehicle stock per adult. In terms of policy implications, our results suggest that: (1) the effectiveness of new fuel efficiency standards will be somewhat mitigated by the rebound effect and (2) fuel price increases have limited impacts on gasoline demand.
Philippe BarlaEmail:

Philippe Barla   is full professor at the economics department of Université Laval. He is currently the director of the research center GREEN and is a member of CDAT. He is conducting theoretical and empirical research on energy efficiency in the transportation sector. Bernard Lamonde   obtained his MA in economics in 2007 working on this project. He is working as an economist for Agence de l’efficacité énergique du Québec. Luis Miranda-Moreno   is professor at McGill Department of Civil Engineering and Applied Mechanics. He was post-doctoral student at CDAT when this research was carried out. His research interests include road safety, travel behaviour and demand modeling. Nathalie Boucher   holds a PhD in economics from Queens’ University. She is the executive director the CDAT a research center dedicated to improving knowledge about energy use in the Canadian private and commercial transportation sector.  相似文献   

13.
An important planning and policy question in the transportation, energy, and environment areas is whether or not air quality control and the associated funding preference and mitigation efforts to attain air quality conformity have indeed led to traveler behavior changes such as reduction in vehicle miles traveled (VMT) or VMT growth rates. In this research, we develop statistical models to analyze the relationship between air quality nonattainment designation and VMT between 1966 and 2004 based on observed data. These models employ different statistical methods, including hypothesis testing and simultaneous equations. Findings from these statistical models and datasets are consistent, and suggest there is a statistically significant negative correlation between nonattainment designation and VMT/VMT growth. For instance, the simultaneous equation model in this research, suggests that if a nonattainment area and an attainment area that are similar in all other aspects (population composition, socio-economics, urbanization, fuel price, vehicle stock, etc.) are compared, the VMT in the nonattainment area will be 1.80% less than that in the attainment area in the short run, and 7.61% less in the long run. While these results show strong statistical evidence that efforts in reducing VMT in nonattainment areas have been successful, future research should be conducted to attribute the VMT reduction effects to specific policy instruments for decision-making (e.g. the Congestion Management and Air Quality Improvement program, the conformity regulation in the transportation planning process, etc.).  相似文献   

14.
Park-and-Ride (PNR) facilities are a commonly used means of making a transit system more widely available. However, given that a PNR passenger must drive for part of the trip, this approach to transit provision has an ambiguous influence on vehicle kilometers traveled (VKT). The impact of PNR on VKT is highly dependent of how PNR users would choose to travel if the PNR facilities were not available. Given that this issue has received little attention in a US context, we use the light rail system in Charlotte, North Carolina as a case study to examine the potential impact of PNR removal on VKT. Using a travel survey of PNR passengers, we estimate the VKT currently generated while driving to and from the rail stations and then estimate how VKT would change under various PNR removal scenarios that assume different behavioral responses. We find that, under the most realistic scenarios, PNR removal would lead the average PNR passenger to increase her driving by 8–15 VKT per round trip.  相似文献   

15.
    
Transferring trip rates to areas without local survey data is a common practice which is typically performed in an ad hoc fashion using household-based cross-classification tables. This paper applies a rule-based decision tree method to develop individual-level trip generation models for eight different trip purposes as defined in the US National Household Travel Survey in addition to daily vehicle miles traveled. For each trip purpose, the models are obtained by finding the best fitted statistical distribution to each of the final decision tree clusters while considering the correlation between the trip rates for other trip purposes. The rule-based models are sensitive to changes in demographics. The performance of the models is then tested and validated in a transferability application to the Phoenix Metropolitan Region. These models can be employed in a disaggregate microsimulation framework to generate trips with different purposes at the individual or household level.  相似文献   

16.
There is considerable research on the climate effects of daily travel, including research on the spatio-temporal and socioeconomic impact factors of daily travel and associated climate change effects. However, this is less true with respect to long-distance trips. This paper uses national transport survey data from Germany to point out differences in GHG emissions related to demographic, socioeconomic and spatial characteristics for daily and long-distance travel. Daily travel and long-distance travel are investigated simultaneously and separately using Logit and OLS regressions. The results show that transport-related GHG emissions from long-distance trips and daily trips are affected by sociodemographics in largely the same direction. In contrast, spatial attributes, like municipality size or density grade of the region, show a different picture. Per capita emissions in rural and suburban areas are higher for daily trips, but lower for long-distance trips than emissions caused by urban residents. While we cannot rule out the possibility of residential self-selection, our findings challenge the idea that compact urban development may help reduce CO2 emissions once long-distance trips are taken into account.  相似文献   

17.
    
This paper investigates the influence of built environment measures on trip distance and walking decision of non-workers by segmenting the populace based on trip purpose, vehicle ownership, and the presence of school-going children in households. The built environment measures of home zone of individuals considered for the present analysis include zonal population density, zonal school enrolment, land use mix diversity index, and an indicator variable that captures if neighbourhoods have footpaths of adequate width available. Statistical analyses conducted on home-based trips indicate that an increase in the land use diversity of a zone has its strongest negative effect on distance travelled for participating in personal/household business activities. The non-vehicle owning group exhibit a higher tendency to walk than the vehicle-owning group for an increase in the land use diversity of zones. Further, the study suggests that school-enrolment in a zone also influences the travel decisions of non-workers in families with school-going children.  相似文献   

18.
In this paper, a joint model of vehicle type choice and utilization is formulated and estimated on a data set of vehicles drawn from the 2000 San Francisco Bay Area Travel Survey. The joint discrete–continuous model system formulated in this study explicitly accounts for common unobserved factors that may affect the choice and utilization of a certain vehicle type (i.e., self-selection effects). A new copula-based methodology is adopted to facilitate model estimation without imposing restrictive distribution assumptions on the dependency structures between the errors in the discrete and continuous choice components. The copula-based methodology is found to provide statistically superior goodness-of-fit when compared with previous estimation approaches for joint discrete–continuous model systems. The model system, when applied to simulate the impacts of a doubling in fuel price, shows that individuals are more likely to shift vehicle type choices than vehicle usage patterns.
Chandra R. Bhat (Corresponding author)Email:

Erika Spissu   is currently a Research Fellow at the University of Cagliari (Italy). She received her Ph.D. from the University of Palermo and University of Cagliari (Italy) in Transport techniques and economics. She spent the past 2 years at The University of Texas at Austin as a Research Scholar focusing primarily in activity-based travel behavior modeling, time use analysis, and travel demand forecasting. Abdul Pinjari   is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of South Florida, Tampa. His research interests include time-use and travel-behavior analysis, and activity-based approaches to travel-demand forecasting. He has his Ph.D. from The University of Texas at Austin. Ram M. Pendyala   is a Professor of Transportation Systems in the Department of Civil, Environmental, and Sustainable Engineering at Arizona State University. He teaches and conducts research in travel behavior analysis, travel demand modeling and forecasting, activity-based microsimulation approaches, and time use. He specializes in integrated land use-transport models, transport policy formulation, and public transit planning and design. He is currently the Vice-Chair of the International Association for Travel Behavior Research and is the immediate past chair of the Transportation Research Board Committee on Traveler Behavior and Values. He has his PhD from the University of California at Davis. Chandra R. Bhat   is a Professor in Transportation at The University of Texas at Austin. He has contributed toward the development of advanced econometric techniques for travel behavior analysis, in recognition of which he received the 2004 Walter L. Huber Award and the 2005 James Laurie Prize from the American Society of Civil Engineers (ASCE), and the 2008 Wilbur S. Smith Distinguished Transportation Educator Award from the Institute of Transportation Engineers (ITE). He is the immediate past chair of the Transportation Research Board Committee on Transportation Demand Forecasting and the International Association for Travel Behaviour Research.  相似文献   

19.
    
The recent increase in demand for performance‐driven and outcome‐based transportation planning makes accurate and reliable performance measures essential. Vehicle miles traveled (VMT), the total miles traveled by all vehicles on roadways, has been utilized widely as a proxy for traffic impact assessment, vehicle emissions, gasoline consumption, and crashes. Accordingly, a number of studies estimate VMT using diverse data sources. This study estimates VMT in the urban area of Bucheon, South Korea, by predicting the annual average daily traffic for unmeasured locations using spatial interpolation techniques (i.e., regression kriging and linear regression). The predictive performance of this method is compared with that of the existing Highway Performance Monitoring System (HPMS) method. The results show that regression kriging could provide more accurate VMT estimates than the HPMS method and linear regression, especially with a small sample size. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
    
A novel methodology that provides more detailed estimates of vehicular polluting emissions is offered, in order to contribute to the improvement and the precision of emission inventories of vehicle sources through the consideration of instantaneous speed changes or acceleration instead of average vehicular speeds. This paper presents the construction and application of an instantaneous emissions model designated hereunder as “Transims’s Snapshots-Based Emissions”, which is set on a Geographic Information System that incorporates instantaneous fuel consumption factors and fuel-based emission factors to attain highest resolution of both, spatial and temporal distribution of vehicular polluting emissions based on traffic simulation through cellular automata with TRANSIMS. This work was applied to the road network of the Mexico City Metropolitan Area as case study. The development of this powerful tool led to obtaining 86,400 maps of the spatial and temporal distribution of vehicular emissions per vehicle circulating on the road network, including the following pollutants: carbon monoxide and carbon dioxide, nitrogen oxides, total hydrocarbons, sulfur oxides, polycyclic aromatic hydrocarbons, black carbon, particles PM10 and PM2.5. The said maps allowed identification with highest level of detail, of the emissions and Hot-spots of fuel consumption. Also, the model permitted to obtain the emissions’ longitudinal profiles of a given vehicle along its route. This study shows that the integration method of the polynomial regression models represents an opportunity for each city to develop more easily and openly its own regional emissions models without requiring deeper programming knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号