首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Traditional pavement distress index such as the Pavement Condition Index (PCI) developed by U.S. Army Corps of Engineers determines coefficients of distresses based on subjective ratings. This study proposed an asphalt pavement distress condition index based on various types of distress data collected from the Long-Term Pavement Performance (LTPP) database through Structural Equation Modeling (SEM). The SEM method treated the overall distress index as a latent variable while various distresses were treated as endogenous and other influence factors such as age, layer thickness, material type, weather, environment and traffic, were exogenous observed variables. The SEM method modeled the contributions of various distresses as well as the influence of other factors on the overall pavement distress condition. Influences of age, layer thickness, material type, environment and traffic on the latent distress condition were in accordance with previous studies. Compared with previous attempts to model latent pavement condition index utilizing SEM method, more pavement condition measurements and influencing factors were included. Specifically, this study adopted the robust maximum likelihood estimator (MLR) to estimate parameters for non-normally distributed data and derived the explicit expression of latent variables with intercepts. A multiple regression prediction model was built to calculate an overall condition index utilizing those measured distress data. The established pavement distress index prediction model provided a rational estimation of weighting coefficients for each distress type. The prediction model showed that alligator cracking, longitudinal cracking in wheel path, non-wheel path longitudinal cracking, transverse cracking, block cracking, edge cracking, patch and bleeding were significant for the latent pavement distress index.  相似文献   

2.
Climate change has the potential to impact long-term road pavement performance. Consequently, to maintain pavements within the same ranges of serviceability as before, current pavement maintenance strategies need to be re-assessed and, if necessary, changed. Changes in maintenance may lead to different agency costs and user costs as a consequence. This paper commences by defining an assessment procedure, showing how maintenance intervention strategies and Life-Cycle Costs (LCC) may be affected by future climate. A typical Virginia flexible pavement structure and anticipated climate change was used as an example. This example is believed to be representative for a great number of localities in the United States. A method using historical climatic data and climate change projections to predict pavement performance using Mechanistic-Empirical Pavement Design Guide (MEPDG) under current or future climate was introduced. Based on pavement performance prediction, maintenance interventions were planned and optimized. The maintenance effects of three treatments (thin overlay, thin overlay with an intermediate layer, and mill & fill) were considered. A Life-Cycle Cost analysis is reported that used binary non-linear programming to minimize the costs (either agency costs or total costs) by optimizing intervention strategies in terms of type and application time. By these means, the differences in maintenance planning and LCC under current and future climate can be derived. It was found, that for this simplified case study, pavement maintenance and LCC may be affected by climate change Optimized maintenance may improve resilience to climate change in terms of intervention strategy and LCC, compared to responsive maintenance.  相似文献   

3.
This paper presents a new class of models for predicting air traffic delays. The proposed models consider both temporal and spatial (that is, network) delay states as explanatory variables, and use Random Forest algorithms to predict departure delays 2–24 h in the future. In addition to local delay variables that describe the arrival or departure delay states of the most influential airports and links (origin–destination pairs) in the network, new network delay variables that characterize the global delay state of the entire National Airspace System at the time of prediction are proposed. The paper analyzes the performance of the proposed prediction models in both classifying delays as above or below a certain threshold, as well as predicting delay values. The models are trained and validated on operational data from 2007 and 2008, and are evaluated using the 100 most-delayed links in the system. The results show that for a 2-h forecast horizon, the average test error over these 100 links is 19% when classifying delays as above or below 60 min. Similarly, the average over these 100 links of the median test error is found to be 21 min when predicting departure delays for a 2-h forecast horizon. The effects of changes in the classification threshold and forecast horizon on prediction performance are studied.  相似文献   

4.
The effect of wind changes on aircraft routing has been identified as a potential impact of climate change on aviation. This is of particular interest for trans-Atlantic flights, where the pattern of upper-level winds over the north Atlantic, in particular the location and strength of the jet stream, strongly influences both the optimal flight route and the resulting flight time. Eastbound trans-Atlantic flights can often be routed to take advantage of the strong tailwinds in the jet stream, shortening the flight time and reducing fuel consumption. Here we investigate the impact of climate change on upper-level winds over the north Atlantic, using five climate model simulations from the Fifth Coupled Model Intercomparison Project, considering a high greenhouse-gas emissions scenario. The impact on aircraft routing and flight time are quantified using flight routing software. The climate models agree that the jet stream will be on average located 1° further north, with a small increase in mean strength, by 2100. However daily variations in both its location and speed are significantly larger than the magnitude of any changes due to climate change. The net effect of climate change on trans-Atlantic aircraft routes is small; in the annual-mean eastbound routes are 1 min shorter and located further north and westbound routes are 1 min longer and more spread out around the great circle. There are, however, seasonal variations; route time changes are larger in winter, while in summer both eastbound and westbound route times increase.  相似文献   

5.
Pavement maintenance is essential for ensuring good riding quality and avoiding traffic congestion, air pollution, and accidents. Improving road safety is one of the most important objectives for pavement management systems. This study utilized the Tennessee Pavement Management System (PMS) and Accident History Database (AHD) to investigate the relationship between accident frequency and pavement distress variables. Focusing on four urban interstates with asphalt pavements, divided median types, and 55 mph speed limits, 21 Negative Binomial Regression models were developed for predicting various types of traffic accident frequencies based on different pavement condition variables, including rut depth (RD), International Roughness Index (IRI), and Present Serviceability Index (PSI). The modeling results indicated that the RD models did not perform well, except for predicting accidents at night and accidents under rain weather conditions; whereas, IRI and PSI were always significant prediction variables in all types of accident models. Comparing the models goodness‐of‐fit results, it was found that the PSI models had a better performance in crash frequency prediction than the RD models and IRI models. This study suggests that the PSI accident prediction models should be considered as a comprehensive approach to integrate the highway safety factors into the pavement management system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Prolongation of the service life of pavements requires efficient prediction of the performance of their structural condition and particularly the occurrence and propagation of cracking of the asphalt layer. Although pavement performance prediction has been extensively investigated in the past, models for predicting the cracking probability and for quantifying impacts of associated explanatory factors following pavement treatment, have not been adequately investigated in the past. In this paper the probability of alligator crack initiation following pavement treatments is modeled with the use of genetically optimized Neural Networks, The proposed methodological approach represents the actual (observed) relationships between of probability of crack initiation and the various design, traffic and weather factors as well as the different rehabilitation strategies. Data from the Long Term Pavement Performance (LTPP) Data Base and the Specific Pavement Study 5 (SPS-5) are used for model development. Results indicate that the proposed approach results in accurately predicting the probability of crack initiation following treatment; furthermore it provided information on the relationship between external factors and cracking probability that can help pavement managers in developing appropriate rehabilitation strategies.  相似文献   

7.
This paper focuses on comparing the frameworks and projections from four global transportation models with considerable technology details. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in part to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2 °C/450 ppm target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as gaps of current policy goals, additional policy targets needed, regional vs. global reductions; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning historical data, and comparing input assumptions and results of policy analysis and modeling insights.  相似文献   

8.
The transportation system is one of the main sectors with significant climate impact. In the U.S. it is the second main emitter of carbon dioxide. Its impact in terms of emission of carbon dioxide is well recognized. But a number of aerosol species have a non-negligible impact. The radiative forcing due to these species needs to be quantified. A radiative transfer code is used. Remote sensing data is retrieved to characterize different regions. The radiative forcing efficiency for black carbon are 396 ± 200 W/m2/AOD for the ground mode and 531 ± 190 W/m2/AOD for the air transportation, under clear sky conditions. The radiative forcing due to contrail is 0.14 ± 0.06 W/m2 per percent coverage. Based on the forcing from the different species emitted by each mode of transportation, policies may be envisioned. These policies may affect demand and emissions of different modes of transportation. Demand and fleet models are used to quantify these interdependencies. Depending on the fuel price of each mode, mode shifts and overall demand reduction occur, and more fuel efficient vehicles are introduced in the fleet at a faster rate. With the introduction of more fuel efficient vehicles, the effect of fuel price on demand is attenuated. An increase in fuel price of 50 cents per gallon, scaled based on the radiative forcing of each mode, results in up to 5% reduction in emissions and 6% reduction in radiative forcing. With technologies, significant reduction in climate impact may be achieved.  相似文献   

9.
Transit ridership is usually sensitive to fares, travel times, waiting times, and access times, among other factors. Therefore, the elasticities of demand with respect to such factors should be considered in modeling bus transit services and must be considered when maximizing net benefits (i.e. “system welfare” = consumer surplus + producer surplus) rather just minimizing costs. In this paper welfare is maximized with elastic demand relations for both conventional (fixed route) and flexible-route services in systems with multiple dissimilar regions and periods. As maximum welfare formulations are usually too complex for exact solutions, they have only been used in a few studies focused on conventional transit services. This limitation is overcome here for both conventional and flexible transit services by using a Real Coded Genetic Algorithm to solve such mixed integer nonlinear welfare maximization problems with constraints on capacities and subsidies. The optimized variables include service type, zone sizes, headways and fares. We also determine the maximum welfare threshold between optimized conventional and flexible services) and explore the effects of subsidies. The proposed planning models should be useful in selecting the service type and optimizing other service characteristics based on local geographic characteristics and financial constraints.  相似文献   

10.
Microsimulation of urban systems evolution requires synthetic population as a key input. Currently, the focus is on treating synthesis as a fitting problem and thus various techniques have been developed, including Iterative Proportional Fitting (IPF) and Combinatorial Optimization based techniques. The key shortcomings of these procedures include: (a) fitting of one contingency table, while there may be other solutions matching the available data (b) due to cloning rather than true synthesis of the population, losing the heterogeneity that may not have been captured in the microdata (c) over reliance on the accuracy of the data to determine the cloning weights (d) poor scalability with respect to the increase in number of attributes of the synthesized agents. In order to overcome these shortcomings, we propose a Markov Chain Monte Carlo (MCMC) simulation based approach. Partial views of the joint distribution of agent’s attributes that are available from various data sources can be used to simulate draws from the original distribution. The real population from Swiss census is used to compare the performance of simulation based synthesis with the standard IPF. The standard root mean square error statistics indicated that even the worst case simulation based synthesis (SRMSE = 0.35) outperformed the best case IPF synthesis (SRMSE = 0.64). We also used this methodology to generate the synthetic population for Brussels, Belgium where the data availability was highly limited.  相似文献   

11.
The current state-of-practice for predicting travel times assumes that the speeds along the various roadway segments remain constant over the duration of the trip. This approach produces large prediction errors, especially when the segment speeds vary temporally. In this paper, we develop a data clustering and genetic programming approach for modeling and predicting the expected, lower, and upper bounds of dynamic travel times along freeways. The models obtained from the genetic programming approach are algebraic expressions that provide insights into the spatiotemporal interactions. The use of an algebraic equation also means that the approach is computationally efficient and suitable for real-time applications. Our algorithm is tested on a 37-mile freeway section encompassing several bottlenecks. The prediction error is demonstrated to be significantly lower than that produced by the instantaneous algorithm and the historical average averaged over seven weekdays (p-value <0.0001). Specifically, the proposed algorithm achieves more than a 25% and 76% reduction in the prediction error over the instantaneous and historical average, respectively on congested days. When bagging is used in addition to the genetic programming, the results show that the mean width of the travel time interval is less than 5 min for the 60–80 min trip.  相似文献   

12.
Among the natural hazards that threaten transportation infrastructure, flooding represents a major hazard to highways as it challenges their design, operation, efficiency and safety. In extreme cases, it may lead to massive obstruction of traffic and direct damages to the road structures themselves and indirect damages to the economic activity and development of the region. To enable the prevention of such consequences, and the proposition of adaptive measures for existing infrastructure, this paper presents an integrated framework to identify the most vulnerable points to flooding along a highway. This is done through the combination of remote sensing information (e.g. LiDAR based Digital Elevation Model, satellite imagery), a high-quality dataset, and a quasi-2D hydrodynamic model. The forcing condition is defined using a hyetograph associated to a storm with duration of 1 day and return period of 100 years. The selected highway is located in the Mexican state of Tabasco, where extreme precipitation events and floods are frequent. Results demonstrate the ability of the methodology to identify critical water levels along the road (h > 1.50 m) at those locations where flooding has been experienced, as well as points of inspection for the highway drainage. These locations were visited in the field and maintenance problems were detected that do increase its level of exposure. We show that this framework is useful for the generation of a flood management strategy to the analyzed highway, which includes an optimum location of adaptive measures to an anticipated more intense future climate.  相似文献   

13.
General concern and knowledge on climate change have been increasingly studied over the past decades. Gender differences have been found for general environmental concern and knowledge, but mixed findings exist with respect to climate change. In transportation, research has examined potential relations between environmental attitudes and transportation behavior, with mixed findings as well. Recently, the use of carbon dioxide (CO2) emissions information to influence choice has been tested with women being found more willing to pay to reduce their personal impacts, suggesting that women are either more willing to change or that their response to information on climate change is stronger. However, those studies used CO2 mass and studies that examined understanding of CO2 information as a mass have found that people struggle to understand it. If concern and knowledge about climate change differ amongst individuals, then, according to theories such as the Transtheoretical Model, the type of information used to motivate choices is likely important. Using a unique data set (n = 236) it is possible to take a first look at how gender might affect concern, knowledge, and action in terms of transportation and climate change. Further, it is also possible to examine behavioral responses to transportation climate change information. Finally, an empirical analysis is conducted of the effect of how the information is presented might differ by gender. Thus, this work aims to investigate whether gender differences might contribute to the explanation of individual behavioral responses (from concern to action) in a transportation climate change context.  相似文献   

14.
Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers. Here, we review the environmental, economic, and social performance of electric two-wheelers, demonstrating that these are generally more energy efficient and less polluting than conventionally-powered motor vehicles. Electric two-wheelers tend to decrease exposure to pollution as their environmental impacts largely result from vehicle production and electricity generation outside of urban areas. Our analysis suggests that the price of e-bikes has been decreasing at a learning rate of 8%. Despite price differentials of 5000 ± 1800 EUR2012 kW h−1 in Europe, e-bikes are penetrating the market because they appear to offer an apparent additional use value relative to bicycles. Mid-size and large electric two-wheelers do not offer such an additional use value compared to their conventional counterparts and constitute niche products at price differentials of 700 ± 360 EUR2012 kW−1 and 160 ± 90 EUR2012 kW−1, respectively. The large-scale adoption of electric two-wheelers can reduce traffic noise and road congestion but may necessitate adaptations of urban infrastructure and safety regulations. A case-specific assessment as part of an integrated urban mobility planning that accounts, e.g., for the local electricity mix, infrastructure characteristics, and mode-shift behavior, should be conducted before drawing conclusions about the sustainability impacts of electric two-wheelers.  相似文献   

15.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

16.
Traditionally, asphalt pavement maintenance mainly considers pavement performance and cost and largely ignores the environment while substantial amount of environmental burdens are released in the process. In this study, a multi-objective optimization model was developed integrating the three elements in order to optimize the asphalt pavement maintenance plans at the project level. Pavement performance element was decided as the multiplier of pavement serviceability index and traffic volume. Cost element was represented by the net present value, including components of agency cost, vehicle operation cost and salvage value. Environmental element, integrating energy consumption, global warming potential, acidification potential and respiratory effects potential, was measured by the life cycle assessment model. A hypothetic asphalt pavement maintenance case study was conducted using the developed multi-objective optimization model and harvested 103 sets of feasible combinations of maintenance plans, each of which is non-dominated by the others. Trade-offs analysis was performed among the three objectives and visualized in both two- and three-dimension forms. It is found there is an opportunity of reducing the cost and environmental impacts to 80.3% and 77.8% and increasing the pavement performance to 146.6% compared to the base case. However, they are mutually compromised and cannot be reached simultaneously. The developed model reveals the quantitatively interactive relationship of the three objectives and helps optimize the asphalt pavement maintenance plans.  相似文献   

17.
18.
The article develops a model which makes it possible to infer drivers’ perceived extra costs per km of driving without a license and the moral costs of doing so. Furthermore, it gives estimates of the ratios between responses to car license suspension in different time perspectives. The calculations are carried out using data over car holders’ willingness to pay for not losing their driving license for 12 months and 24 months, their yearly driving distance and variable car usage costs. The elasticity ratios estimated here are compared with previous studies of short-term and long-term elasticities of car usage with respect to car usage costs.  相似文献   

19.
This article presents the results of a scenario-based study carried out at the European Commission’s Joint Research Centre aimed at analyzing the future growth of aviation, the resulting fuel demand and the deployment of biofuels in the aviation sector in Europe. Three scenarios have been produced based on different input assumptions and leading to different underlying patterns of growth and resulting volumes of traffic. Data for aviation growth and hence fuel demand have been projected on a year by year basis up to 2030, using 2010 as the baseline. Data sources are Eurostat statistics and actual flight information from EUROCONTROL. Relevant variables such as the number of flights, the type of aircrafts, passengers or cargo tonnes and production indicators (RPKs) are used together with fuel consumption and CO2 emissions data. The target of the European Advanced Biofuels Flightpath to ensure the commercialization and consumption of 2 million tons of sustainably produced paraffinic biofuels in the aviation sector by 2020, has also been taken into account. Results regarding CO2 emission projections to 2030, reveal a steady annual increase in the order of 3%, 1% and 4% on average, for the three different scenarios, providing also a good correlation compared to the annual traffic growth rates that are indicated in the three corresponding scenarios. In absolute values, these ratios correspond to the central, the pessimistic and the optimistic scenarios respectively, corresponding to 360 million tonnes CO2 emissions in 2030, ranging from 271 to 401 million tonnes for the pessimistic and optimistic scenarios, respectively. This article also reports on the supply potential of aviation biofuels (clustered in HEFA/HVOs and biojet) based on the production capacity of facilities around the world and provides an insight on the current and future trends in aviation based on the European and national policies, innovations and state-of-the art technologies that will influence the future of sustainable fuels in aviation.  相似文献   

20.
Little appears to be known about the capitalization of transportation accessibility in South Asian housing markets, which typically differ from those of industrialized countries. This study starts addressing this gap by providing empirical evidence about the nature and the magnitude of the value of accessibility as reflected by residential rents in Rajshahi City, Bangladesh. Results of our SARAR spatial hedonic model estimated on 526 observations from a random sample collected via in-person interviews indicate that the rent of a multi-unit dwelling decreases by 0.0239% for every 1% increase in network access distance to the nearest major road. Moreover, proximity (within 400 m) to a primary school and to a healthcare facility commands rent premiums of respectively 93.55 BDT ($1.40) and 109.45 BDT ($1.64). Surprisingly, whether access roads are paved or not does not statistically impact rents, probably because of the dominance of walking, rickshaws use, and biking, combined with the rarity of personal cars. Likewise, proximity to bus stops and to train stations is not reflected in rents of multi-family dwellings, likely because buses and trains in Rajshahi City only provide regional and national service. Differences in estimates of our spatial models between maximum likelihood (ML) and generalized spatial two-stage-least-squares illustrate the danger of relying on ML in the presence of heteroskedasticity. These results should be useful for planning transportation infrastructure funding measures in least developed country cities like Rajshahi City.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号