首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two of the ways in which air travel affects climate are the emission of carbon dioxide and the creation of high-altitude contrails. One possible impact reduction strategy is to significantly reduce the formation of contrails. This could be achieved by limiting the cruise altitude of aircraft. If implemented, this could severely constrain air space capacity, especially in parts of Europe. In addition, carbon emissions would likely be higher due to less efficient aircraft operation at lower cruise altitudes. This paper describes an analysis of these trade-offs using an air space simulation model as applied to European airspace. The model simulates the flight paths and altitudes of each aircraft and is here used to calculate emissions of carbon dioxide and changes in the journey time. For a one-day Western European traffic sample, calculations suggest annual mean CO2 emissions would increase by only 4% if cruise altitudes were restricted to prevent contrail formation. The change in journey time depended on aircraft type and route, but average changes were less than 1 min. Our analysis demonstrates that altitude restrictions on commercial aircraft could be an effective means of reducing climate change impacts, though it will be necessary to mitigate the increased controller workload conflicts that this will generate.  相似文献   

2.
In early 2001, the US Federal Aviation Administration embarked on a multi-year effort to develop a new computer model, the System for assessing Aviation’s Global Emissions (SAGE). Currently at Version 1.5, the basic use of the model has centered on the development of yearly global inventories of commercial aircraft fuel burn and emissions of various pollutants to serve as the basis for scenario modeling. This paper describes the algorithms and data used in the model as well as the results from initial validation assessments. SAGE results indicate that global fuel burn and nitrogen oxide (NOx) emissions decreased by over 6% from 2000 to 2001 (fuel burn and NOx), and then steadily increased to over 12% (fuel burn) and 15.5% (NOx) above 2000 levels in 2005. Comparisons to the results from previous studies have shown that SAGE tends to agree more closely with fuel burn and NOx than with CO and HC. Validation assessments have shown that SAGE can predict per flight fuel burn to within 3% on an average basis with no apparent bias, when compared to about 60,000 flight’s worth of data from a major US airline and about 20,000 flight’s worth of data from two major Japanese airlines.  相似文献   

3.
This paper introduces a linear holding strategy based on prior works on cruise speed reduction, aimed at performing airborne delay at no extra fuel cost, as a complementary strategy to current ground and airborne holding strategies. Firstly, the equivalent speed concept is extended to climb and descent phases through an analysis of fuel consumption and speed from aircraft performance data. This gives an insight of the feasibility to implement the concept, differentiating the case where the cruise flight level initially requested is kept and the case where it can be changed before departure in order to maximize the linear holding time. Illustrative examples are given, where typical flights are simulated using an optimal trajectory generation tool where linear holding is maximized while keeping constant the initially planned fuel. Finally, the effects of linear holding are thoroughly assessed in terms of the vertical trajectory profiles, range of feasible speed intervals and trade-offs between fuel and time. Results show that the airborne delay increases significantly with nearly 3-fold time for short-haul flights and 2-fold for mid-hauls to the cases in prior works.  相似文献   

4.
Estimates of global aviation fuel burn and emissions are currently nearly 10 years out of date. Here, the development of the Aircraft Performance Model Implementation (APMI) software which is used to update global commercial aviation fuel burn and emissions estimates is described. The results from APMI are compared with published estimates obtained using the US Federal Aviation Administration’s System for Assessing Aviation’s Global Emissions (SAGE) for the year 2006. The number of global departures modelled with the APMI software is 8% lower compared with SAGE and reflects the difference between their commercial air traffic statistics data sources. The mission fuel burn, CO2 and H2O estimates from APMI are approximately 20% lower than those predicted by SAGE for 2006 while the estimate for the total global aircraft SOx emissions is approximately 40% lower. The estimates for the emissions of CO, HC and NOx are 10%, 140% and 30% higher than those predicted by SAGE respectively. The reasons for these differences are discussed in detail.  相似文献   

5.
This paper focuses on assessing and applying the Federal Aviation Administration’s System for assessing Aviation’s Global Emissions (SAGE), Version 1.5, to evaluate global aircraft fuel consumption and emissions. The model is capable of computing fuel burn and emissions on a flight-by-flight, fleet and global basis. Here, a parametric study was conducted to rank-order the effects that the modeling uncertainties had on estimates of fuel burn and emissions. Statistical methods were applied to analyze both the random and systematic errors of the model. Also, applying the model to a sample policy analysis case allowed an examination of more stringent engine certification standards for mitigating aviation emissions. Uncertainties of the model were carefully accounted for in the fuel burn and emissions scenarios of the policy options. Results show that for some applications, SAGE may be used to resolve small differences in fleet emissions performance. Although the absolute uncertainty in flight-by-flight NOx predictions from the model are of the order of 40%, results show that it is well within the current capabilities of the model to distinguish between the fleet average NOx emissions associated with the typical NOx stringency options considered in policy analyses.  相似文献   

6.
Aviation is a mode with high fuel consumption per passenger mile and has significant environmental impacts. It is important to seek ways to reduce fuel consumption by the aviation sector, but it is difficult to improve fuel efficiency during the en-route cruise phase of flight because of technology barriers, safety requirements, and the mode of operations of air transportation. Recent efforts have emphasized the development of innovative Aircraft Ground Propulsion Systems (AGPS) for electrified aircraft taxi operations. These new technologies are expected to significantly reduce aircraft ground-movement-related fuel burn and emissions. This study compares various emerging AGPS systems and presents a comprehensive review on the merits and demerits of each system, followed with the local environmental impacts assessment of these systems. Using operational data for the 10 busiest U.S. airports, a comparison of environmental impacts is performed for four kinds of AGPS: conventional, single engine-on, external, and on-board systems. The results show that there are tradeoffs in fuel and emissions among these emerging technologies. On-board system shows the best performance in the emission reduction, while external system shows the least fuel burn. Compared to single-engine scenario, external AGPS shows the reduction of HC and CO emissions but the increase of NOx emission. When a general indicator is considered, on-board AGPS shows the best potential of reducing local environmental impacts. The benefit-cost analysis shows that both external and on-board systems are worth being implemented and the on-board system appeals to be more beneficial.  相似文献   

7.
In-use micro-scale fuel use and emission rates were measured for eight cement mixer trucks using a portable emission measurement system. Each vehicle was tested on petroleum diesel and B20 biodiesel. Average fuel use and emission rates increase monotonically versus engine manifold absolute pressure. A typical duty cycle includes loading at a cement plant, transit while loaded from the cement plant to work site, creeping in a queue of vehicles at the worksite, unloading, and transit without load from the site to the plant. For B20 versus petroleum diesel, there is no significant change in the rate of fuel use, CO2 emissions, and NO emissions, and significant decreases in emissions for CO, hydrocarbons, and particulate matter. For loaded versus unloaded onroad travel, fuel use and CO2 emissions rates are approximately 60% higher and the rates for other pollutants are approximately 30–50% higher. A substantial portion of cycle emissions occurred at the work site. Inter-vehicle and intra-cycle variability are also quantified using the micro-scale methodology.  相似文献   

8.
This paper builds a model for estimating the fuel consumption of a taxiing aircraft using flight data recorder information from operational aircraft. The taxi fuel burn is modeled as a linear function of several potential explanatory variables including the taxi time, number of stops, number of turns and number of acceleration events, and the coefficients are estimated using least-squares regression. The statistical significance of each potential factor is investigated. Our analysis shows that in addition to the taxi time, the number of acceleration events is a significant factor in determining taxi fuel consumption. Since the model parameters are estimated using data from operational aircraft, they provide more accurate estimates of fuel burn than methods that use idealized physical models of fuel consumption based on aircraft velocity profiles, or the baseline fuel consumption estimates provided by the International Civil Aviation Organization.  相似文献   

9.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

10.
In this paper we describe the methods used to develop the open source Aviation Emissions Inventory Code and produce a global emissions inventory for scheduled civil aviation, with quantified uncertainty. We estimate that in 2005, scheduled civil aviation was responsible for 180.6 Tg of fuel burn, which agrees to within 4% of other published emissions inventories for 2004 and 2006. By comparing the Aviation Emissions Inventory Code with flight data records, we show that the mean bias in predicted fuel burn at the airport-pair level is +1% for an ensemble of 132 flights, and less than 10% for 5 of the 6 aircraft types used in the validation.  相似文献   

11.
This paper considers the environmental effects of air traffic management speed constraints during the departure phase of flight. We present a CO2 versus noise trade-off study that compares aircraft departure procedures subject to speed constraints with a free speed scenario. A departure route at Gothenburg Landvetter Airport in Sweden is used as a case study and the analysis is based on airline flight recorded data extracted from the Airbus A321 aircraft. Results suggest that CO2 emissions could be reduced by 180 kg per flight if all departure speed constraints were removed at a cost of increased noise exposure below 70 dB(A).  相似文献   

12.
Ground-based aircraft trajectory prediction is a major concern in air traffic control and management. A safe and efficient prediction is a prerequisite to the implementation of new automated tools.In current operations, trajectory prediction is computed using a physical model. It models the forces acting on the aircraft to predict the successive points of the future trajectory. Using such a model requires knowledge of the aircraft state (mass) and aircraft intent (thrust law, speed intent). Most of this information is not available to ground-based systems.This paper focuses on the climb phase. We improve the trajectory prediction accuracy by predicting some of the unknown point-mass model parameters. These unknown parameters are the mass and the speed intent. This study relies on ADS-B data coming from The OpenSky Network. It contains the climbing segments of the year 2017 detected by this sensor network. The 11 most frequent aircraft types are studied. The obtained data set contains millions of climbing segments from all over the world. The climbing segments are not filtered according to their altitude. Predictive models returning the missing parameters are learned from this data set, using a Machine Learning method. The trained models are tested on the two last months of the year and compared with a baseline method (BADA used with the mean parameters computed on the first ten months). Compared with this baseline, the Machine Learning approach reduce the RMSE on the altitude by 48% on average on a 10 min horizon prediction. The RMSE on the speed is reduced by 25% on average. The trajectory prediction is also improved for small climbing segments. Using only information available before the considered aircraft take-off, the Machine Learning method can predict the unknown parameters, reducing the RMSE on the altitude by 25% on average.The data set and the Machine Learning code are publicly available.  相似文献   

13.
Vehicle lightweighting reduces fuel cycle greenhouse gas (GHG) emissions but may increase vehicle cycle (production) GHG emissions because of the GHG intensity of lightweight material production. Life cycle GHG emissions are estimated and sensitivity and Monte Carlo analyses conducted to systematically examine the variables that affect the impact of lightweighting on life cycle GHG emissions. The study uses two real world gliders (vehicles without powertrain or battery) to provide a realistic basis for the analysis. The conventional and lightweight gliders are based on the Ford Fusion and Multi Material Lightweight Vehicle, respectively. These gliders were modelled with internal combustion engine vehicle (ICEV), hybrid electric vehicle (HEV), and battery electric vehicle (BEV) powertrains. The probability that using the lightweight glider in place of the conventional (steel-intensive) glider reduces life cycle GHG emissions are: ICEV, 100%; HEV, 100%, and BEV, 74%.The extent to which life cycle GHG emissions are reduced depends on the powertrain, which affects fuel cycle GHG emissions. Lightweighting an ICEV results in greater base case GHG emissions mitigation (10 t CO2eq.) than lightweighting a more efficient HEV (6 t CO2eq.). BEV lightweighting can result in higher or lower GHG mitigation than gasoline vehicles, depending largely on the source of electricity.  相似文献   

14.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

15.
Trajectory optimisation has shown good potential to reduce environmental impact in aviation. However, a recurring problem is the loss in airspace capacity that fuel optimal procedures pose, usually overcome with speed, altitude or heading advisories that lead to more costly trajectories. This paper aims at the quantification in terms of fuel and time consumption of implementing suboptimal trajectories in a 4D trajectory context that use required times of arrival at specific navigation fixes. A case study is presented by simulating conflicting Airbus A320 departures from two major airports in Catalonia. It is shown how requiring an aircraft to arrive at a waypoint early or late leads to increased fuel burn. In addition, the efficiency of such methods to resolve air traffic conflicts is studied in terms of both fuel burn and resulting aircraft separations. Finally, various scenarios are studied reflecting various airline preferences with regards to cost and fuel burn, as well as different route and conflict geometries for a broader scope of study.  相似文献   

16.
This paper explores the effect of airline emissions charges on airfares, airline service quality, aircraft design features, and network structure, using a detailed and realistic theoretical model of competing duopoly airlines. These impacts are derived by analyzing the effects of an increase in the effective price of fuel, which is the path by which emissions charges will alter airline choices. The results show that emission charges will raise fares, reduce flight frequency, increase load factors, and raise aircraft fuel efficiency, while having no effect on aircraft size. Given that these adjustments occur in response to the treatment of an emissions externality that is currently unaddressed, they represent efficient changes that move society closer to a social optimum.  相似文献   

17.
Road transport is a major source of CO2 emissions in Ireland and accounts for almost 96% of the total CO2 emissions from the transport sector. Following the recent adopted UNFCCC reporting guidelines on annual inventories [24/CP.19], this study applied the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC GLs) tier 3 approach to estimate CO2 emissions from road transport at the vehicle category level, for the first time in Ireland. For this, disaggregated datasets were prepared based on year of vehicle registration and mileage since registration of the vehicle. Such an approach provided a more realistic national scenario in comparison to the use of average mileage degradation in emission calculations. This investigation comprised a recalculation of previous emissions estimates (1990–2012) and an estimation of CO2 emissions in 2013 using a previously unavailable level of data disaggregation for vehicle mileage as well as using vehicle class specific data and an improved bottom-up estimation methodology in COPERT. Historic vehicle fleet data were restructured, annual mileage data were estimated in relation to the fleet data and back extrapolated using a regression approach.The results showed that the mileage degradation was not only subject to fuel technology, engine size, and age but also the emissions class and vehicle category. It was also observed that the disaggregated level of data provided a different CO2 emissions split among the vehicle categories than that of previous estimations which were based on an aggregated level of data. Previous emissions inventories (1990–2012) were shown to have underestimated the share from diesel fuelled passenger cars by more than 56% in 2012. Diesel fuelled passenger cars were also found to account for the majority of CO2 emissions from road transport activities in Ireland in 2013. The level and trend assessment showed that emissions from Euro-II and Euro-III classed vehicles especially for passenger cars, which have a significant contribution to the total emission in 2013 have caused an increase in fleet level emissions in Ireland. In addition, the results also showed that the emissions share from Light Duty Vehicles and Heavy Duty Vehicles were overestimated by previous investigations. This paper highlights the importance of the resolution of data used in emissions inventory preparation which may impact upon future projections and policy formulation. The findings of this investigation are also discussed in relation their implications for road transport policy, including carbon taxation and future policy options aimed at achieving EU emissions target in 2020.  相似文献   

18.
Discrepancies between real-world use of vehicles and certification cycles are a known issue. This paper presents an analysis of vehicle fuel consumption and pollutant emissions of the European certification cycle (NEDC) and the proposed worldwide harmonized light vehicles test procedure (WLTP) Class 3 cycle using data collected on-road. Sixteen light duty vehicles equipped with different propulsion technologies (spark-ignition engine, compression-ignition engine, parallel hybrid and full hybrid) were monitored using a portable emission measurement system under real-world driving conditions. The on-road data obtained, combined with the Vehicle Specific Power (VSP) methodology, was used to recreate the dynamic conditions of the NEDC and WLTP Class 3 cycle. Individual vehicle certification values of fuel consumption, CO2, HC and NOx emissions were compared with test cycle estimates based on road measurements. The fuel consumption calculated from on-road data is, on average, 23.9% and 16.3% higher than certification values for the recreated NEDC and WLTP Class 3 cycle, respectively. Estimated HC emissions are lower in gasoline and hybrid vehicles than certification values. Diesel vehicles present higher estimated NOx emissions compared to current certification values (322% and 326% higher for NOx and 244% and 247% higher for HC + NOx for NEDC and WLTP Class 3 cycle, respectively).  相似文献   

19.
Due to the ongoing increase in the number of commercial flights, greenhouse gas emissions from aviation are expected to rise significantly. Balancing the pursuit of productivity growth with environmental-footprint control policies comprises a long-term regulatory challenge. In this light, the main goals of the present paper are: (i) to measure the CO2 emissions of European airlines from 2000 to 2010, (ii) to compute airlines’ productivity in developing an environmental-sensitive productivity index, (iii) to compare the obtained results with those resulting from a traditional index, and (iv) to identify the drivers affecting productivity changes. Our results show that on average, airlines’ relative CO2 emissions have decreased. Although the airlines we studied experienced an average productivity increase—both considering and not considering negative externalities production—environmentally sensible productivity growth is lower than traditional productivity growth. Finally, we find that improvements in load factor as well as a combined increase in stage length and aircraft size affect productivity changes positively, while fuel efficiency is significant only in the case of a CO2-sensitive measure of productivity.  相似文献   

20.
The objective of this paper is to explore the possible consequences of the future low-sulphur fuel requirements in Sulphur Emission Control Areas (SECA) on vessel speed, from the standpoint of the container shipping industry. Rational energy use, speed reduction, and revenues are closely related in the container shipping sector because speed reductions may provide substantial energy and cost savings. The operators could consider reducing their speed in SECA in order to save on fuel that will become relatively expensive. However, to maintain a weekly frequency without adding new ships, such a behaviour implies that the required speed at sea outside the SECA area increases. This paper aims to investigate if such a difference in speed is cost-effective, and if the increase in speed outside SECA may result in an increase in CO2 emissions of the total cycle. We propose a cost model that estimates the cost-minimising combination of speeds inside and outside SECA, and the resulting CO2 emissions of the liner service. Applying this model to representative liner services serving North Europe, we find that differentiating speed accordingly slightly decreases total costs and increases CO2 emissions in a similar way. The results are sensitive to the price of low-sulphur fuels, the part of the cycle in SECA and the number of ships deployed in the service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号