首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Electric vehicles are often said to reduce carbon dioxide (CO2) emissions. However, the results of current comparisons with conventional vehicles are not always in favor of electric vehicles. We outline that this is not only due to the different assumptions in the time of charging and the country-specific electricity generation mix, but also due to the applied assessment method. We, therefore, discuss four assessment methods (average annual electricity mix, average time-dependent electricity mix, marginal electricity mix, and balancing zero emissions) and analyze the corresponding CO2 emissions for Germany in 2030 using an optimizing energy system model (PERSEUS-NET-TS). Furthermore, we distinguish between an uncontrolled (i.e. direct) charging and an optimized controlled charging strategy. For Germany, the different assessment methods lead to substantial discrepancies in CO2 emissions for 2030 ranging from no emissions to about 0.55 kg/kWhel (110 g/km). These emissions partly exceed the emissions from internal combustion engine vehicles. Furthermore, depending on the underlying power plant portfolio and the controlling objective, controlled charging might help to reduce CO2 emissions and relieve the electricity grid. We therefore recommend to support controlled charging, to develop consistent methodologies to address key factors affecting CO2 emissions by electric vehicles, and to implement efficient policy instruments which guarantee emission free mobility with electric vehicles agreed upon by researchers and policy makers.  相似文献   

2.
This paper derives the energy efficiencies and CO2 emissions for electric, diesel and hydrogen traction for railway vehicles on a well-to-wheel basis, using the low heating value and high heating value of the enthalpy of oxidation of the fuel. The tank-to-wheel and well-to-tank efficiency are determined. Gaseous hydrogen has a WTW efficiency of 25% low heating value, if produced from methane and used in a fuel cell. This efficiency is similar to diesel and electric traction in the UK, US, and California. A reduction of about 19% in CO2 is achieved when hydrogen gas is used in a fuel cell compared to diesel traction, and a 3% reduction compared to US electricity.  相似文献   

3.
The accelerated diffusion of cleaner vehicles to reduce CO2 emissions in transport can be explicitly integrated in emission trading designs by making use of cross-sectoral energy efficiency investment opportunities that are found in data on CO2 emissions during the production and the use of cars and trucks. We therefore elaborate the introduction of tradable certificates that are allocated or grandfathered to manufacturers that provide vehicles (and other durable goods) that enable their customers to reduce their own CO2 emissions. This certificate is an allowance for each tonne CO2 avoided. Manufacturers can then sell these certificates on the emission market and use the revenues to lower the price of their cleanest vehicles. This mechanism should partially overcome the price difference with less efficient cars. In a simulation, we found that the introduction of the certificate in tradable permit systems can lead to very significant reductions of CO2 emissions. The simulations indicate that CO2 emissions resulting from the car fleet can be reduced by 25 to 38% over a period of 15 years (starting in 1999). For the truck fleet, the reduction potential is more limited but still very interesting.  相似文献   

4.
To accurately investigate vehicle emissions that have become major contributors to global air pollutants and greenhouse gases, test conditions have been transferred from laboratory type approval test cycles to real-world driving conditions. In this study, the real-world driving emissions of carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and carbon dioxide (CO2) from one gasoline and two diesel Euro 6b light-duty passenger vehicles were investigated by a portable emission measurement system (PEMS) in Lyon, France. NOx and CO2 emission controls remain critical to addressing the real-world driving emissions of Euro 6b vehicles. Notably, the tested gasoline vehicle emitted higher CO2 emissions than diesel vehicles on all types of roads, especially on the urban road with an excess of 29.3–48.3%. The highest emission factors of gaseous pollutants generally occurred on the motorway for the gasoline vehicle, while on the urban road for diesel vehicles. In particular, for high-speed driving conditions, the gasoline vehicle gaseous emissions, especially NOx emissions, were more affected by acceleration than diesel vehicle emissions. In addition, the CO emissions, especially THC emissions, for the gasoline vehicle, were more influenced by warm-start, especially cold-start, than those for diesel vehicles.  相似文献   

5.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

6.
This paper evaluates the impacts on energy consumption and carbon dioxide (CO2) emissions from the introduction of electric vehicles into a smart grid, as a case study. The AVL Cruise software was used to simulate two vehicles, one electric and the other engine-powered, both operating under the New European Driving Cycle (NEDC), in order to calculate carbon dioxide (CO2) emissions, fuel consumption and energy efficiency. Available carbon dioxide data from electric power generation in Brazil were used for comparison with the simulated results. In addition, scenarios of gradual introduction of electric vehicles in a taxi fleet operating with a smart grid system in Sete Lagoas city, MG, Brazil, were made to evaluate their impacts. The results demonstrate that CO2 emissions from the electric vehicle fleet can be from 10 to 26 times lower than that of the engine-powered vehicle fleet. In addition, the scenarios indicate that even with high factors of CO2 emissions from energy generation, significant reductions of annual emissions are obtained with the introduction of electric vehicles in the fleet.  相似文献   

7.
In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses.In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO2eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO2eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO2 are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle.In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO2eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO2eq intensity is also low in this period, but midday charging leads to the largest savings in CO2eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO2eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.  相似文献   

8.
Increasingly strict emissions standards are providing a major impetus to vehicle manufactures for developing advanced powertrain and after-treatment systems that can significantly reduce real driving emissions. The knowledge of the gaseous emissions from diesel engines under steady-state operation and under transient operation provides substantial information to analyze real driving emissions of diesel vehicles. While there are noteworthy advances in the assessment of road vehicle emissions from real driving and laboratory measurements, detailed information on real driving gaseous emissions are required in order to predict effectively the real-time gaseous emissions from a diesel vehicle under realistic driving conditions. In this work, experiments were performed to characterize the behavior of NOx, unburned HC, CO, and CO2 emitted from light-duty diesel vehicles that comply with Euro 6 emissions standards. The driving route fully reflected various real-world driving conditions such as urban, rural, and highway. The real-time emission measurements were conducted with a Portable Emissions Measurement System (PEMS) including a Global Positioning System (GPS). To investigate the gaseous emission characteristics, authors determined the road load coefficients of vehicle specific power (VSP) and regression coefficient between fuel use rate and VSP. Furthermore, this work revealed the correlation between the rates of average fuel use and each gaseous emission.  相似文献   

9.
In this paper we present a mixed-integer linear program to represent the decision-making process for heterogeneous fleets selecting vehicles and allocating them on freight delivery routes to minimize total cost of ownership. This formulation is implemented to project alternative powertrain technology adoption and utilization trends for a set of line-haul fleets operating on a regional network. Alternative powertrain technologies include compressed (CNG) and liquefied natural gas (LNG) engines, hybrid electric diesel, battery electric (BE), and hydrogen fuel cell (HFC). Future policies, economic factors, and availability of fueling and charging infrastructure are input assumptions to the proposed modeling framework. Powertrain technology adoption, vehicle utilization, and resulting CO2 emissions predictions for a hypothetical, representative regional highway network are illustrated. A design of experiments (DOE) is used to quantify sensitivity of adoption outcomes to variation in vehicle performance parameters, fuel costs, economic incentives, and fueling and charging infrastructure considerations. Three mixed-adoption scenarios, including BE, HFC, and CNG vehicle market penetration, are identified by the DOE study that demonstrate the potential to reduce cumulative CO2 emissions by more than 25% throughout the period of study.  相似文献   

10.
In-use micro-scale fuel use and emission rates were measured for eight cement mixer trucks using a portable emission measurement system. Each vehicle was tested on petroleum diesel and B20 biodiesel. Average fuel use and emission rates increase monotonically versus engine manifold absolute pressure. A typical duty cycle includes loading at a cement plant, transit while loaded from the cement plant to work site, creeping in a queue of vehicles at the worksite, unloading, and transit without load from the site to the plant. For B20 versus petroleum diesel, there is no significant change in the rate of fuel use, CO2 emissions, and NO emissions, and significant decreases in emissions for CO, hydrocarbons, and particulate matter. For loaded versus unloaded onroad travel, fuel use and CO2 emissions rates are approximately 60% higher and the rates for other pollutants are approximately 30–50% higher. A substantial portion of cycle emissions occurred at the work site. Inter-vehicle and intra-cycle variability are also quantified using the micro-scale methodology.  相似文献   

11.
How a city grows and changes, along with where people choose to live likely affects travel behavior, and thus the amount of transportation CO2 emissions that they produce. People generally go through different stages in their life, and different travel needs are associated with each. The impact of the built environment may vary depending on the lifecycle stage, and the years spent at each stage will differ. A family with children may last for twenty to thirty years, while the time spent without dependents might be short in comparison. Over a family’s lifecycle, how big of a difference might the built environment, through household location choice, have on the amount of transportation CO2 emissions produced? From a climate change perspective, how significant is residential location on the CO2 produced by transportation use? This paper uses data from the Osaka metropolitan area to compare the direct transportation CO2 emissions produced over a family’s lifecycle across five different built environments to determine whether any are sustainable and which lifecycle stage has the greatest overall emissions. This understanding would enable the design of a targeted policy based on household lifecycle to reduce overall transportation CO2 of individuals throughout one’s lifecycle. The yearly average per-capita family lifetime transportation CO2 emissions were 0.25, 0.35, 0.58, 0.78, and 0.79 metric tonnes for the commercial, mixed-commercial, mixed-residential, autonomous, and rural areas respectively. The results show that only the commercial and mixed-commercial areas were considered to be sustainable from a climate change and transportation perspective.  相似文献   

12.
Vehicle lightweighting reduces fuel cycle greenhouse gas (GHG) emissions but may increase vehicle cycle (production) GHG emissions because of the GHG intensity of lightweight material production. Life cycle GHG emissions are estimated and sensitivity and Monte Carlo analyses conducted to systematically examine the variables that affect the impact of lightweighting on life cycle GHG emissions. The study uses two real world gliders (vehicles without powertrain or battery) to provide a realistic basis for the analysis. The conventional and lightweight gliders are based on the Ford Fusion and Multi Material Lightweight Vehicle, respectively. These gliders were modelled with internal combustion engine vehicle (ICEV), hybrid electric vehicle (HEV), and battery electric vehicle (BEV) powertrains. The probability that using the lightweight glider in place of the conventional (steel-intensive) glider reduces life cycle GHG emissions are: ICEV, 100%; HEV, 100%, and BEV, 74%.The extent to which life cycle GHG emissions are reduced depends on the powertrain, which affects fuel cycle GHG emissions. Lightweighting an ICEV results in greater base case GHG emissions mitigation (10 t CO2eq.) than lightweighting a more efficient HEV (6 t CO2eq.). BEV lightweighting can result in higher or lower GHG mitigation than gasoline vehicles, depending largely on the source of electricity.  相似文献   

13.
This paper compares transport-related CO2 emissions of online and brick-and-mortar shopping based on supply, delivery, order and travel data related to one multi-channel clothing retailer. A sensitivity analysis sheds more light on how situational factors, such as the customers’ travel distances, returns, the use of public transport modes and information behavior via different channels influence the outcome of this comparison. The results show that online retailing causes lower CO2 emissions under many conditions. Nevertheless, the brick-and-mortar channel is more environmentally friendly when travel distances are small. The radius for which brick-and-mortar shopping has an advantage increases when returns, shifts in the use of public transport and information behavior are also considered.  相似文献   

14.
The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low-carbon alternative to today’s gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition to conventional fuels was introduced into the MIT Emissions Prediction and Policy Analysis (EPPA) model as a perfect substitute for internal combustion engine (ICE-only) vehicles in two likely early-adopting markets, the United States and Japan. We investigate the effect of relative vehicle cost and all-electric range on the timing of PHEV market entry in the presence and absence of an advanced cellulosic biofuels technology and a strong (450 ppm) economy-wide carbon constraint. Vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals for reducing battery costs are met. If a low-cost PHEV is available we find that its adoption has the potential to reduce CO2 emissions, refined oil demand, and under a carbon policy the required CO2 price in both the United States and Japan. The emissions reduction potential of PHEV adoption depends on the carbon intensity of electric power generation. Thus, the technology is much more effective in reducing CO2 emissions if adoption occurs under an economy-wide cap and trade system that also encourages low-carbon electricity generation.  相似文献   

15.
Car ownership in China is expected to grow dramatically in the coming decades. If growing personal vehicle demand is met with conventional cars, the increase in greenhouse gas emissions will be substantial. One way to mitigate carbon dioxide (CO2) emissions from passenger travel is to meet growing demand for cars with alternative vehicles such as hybrid- and battery-electric vehicles (HEVs and BEVs). Our study examines the cost-effectiveness of transitioning from conventional cars to HEVs and BEVs, by calculating their marginal abatement cost (MAC) of carbon in the long-run. We find that transitioning from conventional to hybrid and battery electric light-duty, four-wheel vehicles can achieve carbon emissions reductions at a negative cost (i.e. at a net benefit) in China. In 2030, the average MAC is estimated to be about −$140/ton CO2 for HEVs and −$515/ton CO2-saved for BEVs, varying by key parameters. The total mitigation potential of each vehicle technology is estimated to be 1.38 million tons for HEVs and 0.75 million tons for BEVs.  相似文献   

16.
The impact of global warming and climate change is the most critical challenge of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. To effectively reduce global warming and encourage sustainable enterprise development, a comparative analysis approach is used to examine various domestic automotive products which utilize the up-to-date innovative technology. Their contributions to fuel consumption and emissions of the greenhouse gas, carbon dioxide (CO2), are then investigated. This study focuses on technical innovation in a conventional engine and output power. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi) have improved energy consumption and CO2 emissions. In addition, an improvement in output power (such as Toyota hybrid vehicles) has also improved energy consumption and CO2 emissions.  相似文献   

17.
Electric vehicles have the potential to lower emissions in the mobility sector, but especially high costs might hinder their market development. This paper aims to access environmental and economic impacts and potentials by comparing CO2-emissions and costs of small vehicles. Considering actual data it is analysed, if and under which conditions electric vehicles are financially competitive for private consumers and under which conditions emissions can be saved. For this, a multiple-stage approach is focusing on (1) emissions during production and operation, (2) private costs and (3) external costs of emissions. A model of total cost of ownership is applied for the analysis of private and external costs.Results show that emissions of electric vehicles exceed emissions of combustion engine vehicles in the production phase, but electric vehicles cause fewer emissions during operation. Total emissions can be saved by electric vehicles even with low annual driving distances (2500–5500 km/a today). Results highly depend on the form of electricity production.Today, private costs of electric vehicles exceed the costs of combustion engine vehicles. Due to cost decreases electric vehicles can gain financial advantages in the future. External costs are high, especially for combustion engine vehicles (up to 15% of private costs), but in none of the considered cases high enough to give electric vehicles a financial advantage today. This picture will change in the future.  相似文献   

18.
The European Union has adopted a range of policies aiming at reducing greenhouse gas emissions from road transport, including setting binding targets for tailpipe CO2 emissions for new light-duty fleets. The legislative framework for implementing such targets allows taking into account the CO2 savings from innovative technologies that cannot be adequately quantified by the standard test cycle CO2 measurement. This paper presents a methodology to define the average productivity of vehicle-mounted photovoltaic roofs and to quantify the resulting CO2 benefits for conventional combustion engine-powered passenger cars in the European Union. The method relies on the analysis of a large dataset of vehicles activity data, i.e. urban driving patterns acquired with GPS systems, combined with an assessment of the shading effect from physical obstacles and indoor parking. The results show that on average the vehicle photovoltaic roof receives 58% of the available solar radiation in real-world conditions, making it possible to reduce CO2 emissions from passenger cars in a range from 1% to 3%, assuming a storage capacity of 20% of the 12 V battery dedicated to solar energy. This methodology can be applied to other vehicles types, such as light and heavy-duty, as well as to different powertrain configurations, such as hybrid and full electric.  相似文献   

19.
The European Clean Vehicle Directive was introduced in 2009 to create an obligation on public authorities to take into account the impact of energy consumption, carbon dioxide (CO2) emissions and pollutant emissions into their purchasing decisions for road transport vehicles. This should stimulate the market for clean and energy-efficient vehicles and improve transport's impact on environment, climate change and energy use. Therefore the so-called ‘Operational Lifetime Cost’ of a vehicle is calculated, divided into the cost for energy consumption, CO2 and pollutant (nitrous oxide, particulate matter, non-methane hydrocarbons) emissions. In Belgium, a different methodology has been developed to calculate the environmental impact of a vehicle, called ‘Ecoscore’, based on a well-to-wheel approach. More pollutants are included compared to the Clean Vehicle methodology, but also indirect emissions are taken into account. In this paper, both methodologies are compared and used to analyze the environmental performance of passenger cars with different fuel types and from different vehicle segments. Similar rankings between both methodologies are obtained; however, the large impact of energy use (and CO2 emissions) in the Clean Vehicle methodology disadvantages compressed natural gas cars, as well as diesel cars equipped with particulate filters, compared to the Ecoscore methodology.  相似文献   

20.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号