首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
Real-world vehicle operating mode data (2.5 million 1 Hz records), collected by instrumenting the vehicles of 82 volunteer drivers with OBD datalogger and GPS while they drove their routine travel routes, were analyzed to quantify vehicle emissions estimate errors due to road grade and driving style in rural, hilly Vermont. Data were collected in winter and summer for MY 1996 and newer passenger cars and trucks only. EPA MOVES2010b was used to estimate running exhaust emissions associated with measured vehicle activity. Changes in vehicle specific power (VSP) and MOVES operating mode (OpMode) due to proper accounting for real-world road grade indicated emission rate errors between 10% and 48%, depending on pollutant, chiefly because grade-related changes in VSP could shift activity by as many as six OpModes, depending on road type. The correct MOVES OpMode assignment was made only 33–55% of the time when road grade was not included in the VSP calculation. Driving style of individual drivers was difficult to assess due to unknown traffic operations data, but the largest differences between individual drivers were observed on rural restricted roads, where traffic conditions and control have minimal impact. The results suggest the importance of (1) measuring and incorporating real-world road grade in order to correctly assign MOVES emission rates; and (2) developing a driving style typology to account for differences in the MOVES emissions estimates due to driver variability.  相似文献   

2.
A leading cause of air pollution in many urban regions is mobile source emissions that are largely attributable to household vehicle travel. While household travel patterns have been previously related with land use in the literature (Crane, R., 1996. Journal of the American Planning Association 62 (1, Winter); Cervero, R. and Kockelman, C., 1997. Transportation Research Part D 2 (3), 199–219), little work has been conducted that effectively extends this relationship to vehicle emissions. This paper describes a methodology for quantifying relationships between land use, travel choices, and vehicle emissions within the Seattle, Washington region. Our analysis incorporates land use measures of density and mix which affect the proximity of trip origins to destinations; a measure of connectivity which impacts the directness and completeness of pedestrian and motorized linkages; vehicle trip generation by operating mode; vehicle miles/h of travel and speed; and estimated household vehicle emissions of nitrogen oxides, volatile organic compounds, and carbon monoxide. The data used for this project consists of the Puget Sound Transportation Panel Travel Survey, the 1990 US Census, employment density data from the Washington State Employment Security Office, and information on Seattle’s vehicle fleet mix and climatological attributes provided by the Washington State Department of Ecology. Analyses are based on a cross-sectional research design in which comparisons are made of variations in household travel demand and emissions across alternative urban form typologies. Base emission rates from MOBILE5a and separate engine start rates are used to calculate total vehicle emissions in grams accounting for fleet characteristics and other inputs reflecting adopted transportation control measures. Emissions per trip are based on the network distance of each trip, average travel speed, and a multi-stage engine operating mode (cold start, hot start, and stabilized) function.  相似文献   

3.
Microscopic emission models are widely used in emission estimation and environment evaluation. Traditionally, microscopic traffic simulation models and probe vehicles are two sources of inputs to a microscopic emission model. However, they are not effective in reflecting all vehicles' real‐world operating conditions. Using each vehicle's spot speed data recorded by detectors, this paper provides a new method to estimate all vehicles' real‐world activities data. These data can then be used as inputs to a microscopic emission model to estimate vehicle fuel consumption and emissions. The main task is to reconstruct trajectory of each vehicle and calculate second‐by‐second speed and acceleration from the activities data. The Next Generation Simulation dataset and the Comprehensive Modal Emissions Model are used in this study to calculate and analyze the emission results for both lane‐level and link‐level. The results showed that using the proposed method for estimating vehicle fuel consumption and emissions is promising. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The Rakha-Pasumarthy-Adjerid (RPA) car-following model has been demonstrated to successfully replicate empirical driver car-following behavior. However, the validity of this model for fuel consumption and emission (FC/EM) estimation has yet to be studied. This paper attempts to address this research need by analyzing the applicability of the model for FC/EM estimation and comparing its performance to other state-of-practice car-following models; namely, the Gipps, Fritzsche and Wiedemann models. Naturalistic empirical data are employed to generate ground truth car-following events. The model-generated second-by-second Vehicle Specific Power (VSP) distributions for each car-following event are then compared to the empirical distributions. The study demonstrates that the generation of realistic VSP distributions is critical in producing accurate FC/EM estimates and that the RPA model outperforms the other three models in producing realistic vehicle trajectory VSP distributions and robust FC/EM estimates. This study also reveals that the acceleration behavior within a car-following model is one of the major contributors to producing realistic VSP distributions. The study further demonstrates that the use of trip-aggregated results may produce erroneous conclusions given that second-by-second errors may cancel each other out, and that lower VSP distribution errors occasionally result in greater bias in FC/EM estimates given the large deviation of the distribution at high VSP levels. Finally, the results of the study demonstrate the validity of the INTEGRATION micro-simulator, given that it employs the RPA car-following model, in generating realistic VSP distributions, and thus in estimating fuel consumption and emission levels.  相似文献   

5.
This paper addresses a Time Dependent Capacitated Vehicle Routing Problem with stochastic vehicle speeds and environmental concerns. The problem has been formulated as a Markovian Decision Process. As distinct from the traditional attempts on the problem, while estimating the amount of fuel consumption and emissions, the model takes time-dependency and stochasticity of the vehicle speeds into account. The Time Dependent Capacitated Vehicle Routing Problem is known to be NP-Hard for even deterministic settings. Incorporating uncertainty to the problem increases complexity, which renders classical optimization methods infeasible. Therefore, we propose an Approximate Dynamic Programming based heuristic as a decision aid tool for the problem. The proposed Markovian Decision Model and Approximate Dynamic Programming based heuristic are flexible in terms that more environmentally friendly solutions can be obtained by changing the objective function from cost minimization to emissions minimization. The added values of the proposed decision support tools have been shown through computational analyses on several instances. The computational analyses show that incorporating vehicle speed stochasticity into decision support models has potential to improve the performance of resulting routes in terms of travel duration, emissions and travel cost. In addition, the proposed heuristic provides promising results within relatively short computation times.  相似文献   

6.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   

7.
Intermodal rail/road transportation is an instrument of green logistics, which may help reducing transport related greenhouse gas (GHG) emissions. In order to assess the environmental impact of road and rail transports, researchers have formulated very detailed microscopic models, which determine vehicle emissions precisely based on a vast number of parameters. They also developed macroscopic models, which estimate emissions more roughly from few parameters that are considered most influential. One of the goals of this paper is to develop mesoscopic models that combine the preciseness of micro-models while requiring only little more information than macro-models. We propose emission models designed for transport planning purposes which are simple to calibrate by transport managers. Despite their compactness, our models are able to reflect the influence of various traffic conditions on a transport’s total emissions. Furthermore, contrasting most papers considering either the road or the rail mode, we provide models on a common basis for both modes of transportation. We validate our models using popular micro- and macroscopic models and we apply them to artificial and real world transport scenarios to identify under which circumstances intermodal transports actually effect lower emissions. We find that travel speed and country-specific energy emission factors influence the eco-friendliness of intermodal transports most severely. Hence, the particular route chosen for a transnational intermodal transport is an important but so far neglected option for eco-friendly transportation.  相似文献   

8.
Globalization, greenhouse gas emissions and energy concerns, emerging vehicle technologies, and improved statistical modeling capabilities make the present moment an opportune time to revisit aggregate vehicle miles traveled (VMT), energy consumption, and greenhouse gas (GHG) emissions forecasting for passenger transportation. Using panel data for the 48 continental states during the period 1998-2008, the authors develop simultaneous equation models for predicting VMT on different road functional classes and examine how different technological solutions and changes in fuel prices can affect passenger VMT. Moreover, a random coefficient panel data model is developed to estimate the influence of various factors (such as demographics, socioeconomic variables, fuel tax, and capacity) on the total amount of passenger VMT in the United States. To assess the influence of each significant factor on VMT, elasticities are estimated. Further, the authors investigate the effect of different policies governing fuel tax and population density on future energy consumption and GHG emissions. The presented methodology and estimation results can assist transportation planners and policy-makers in determining future energy and transportation infrastructure investment needs.  相似文献   

9.
This paper presents a computationally efficient and theoretically rigorous dynamic traffic assignment (DTA) model and its solution algorithm for a number of emerging emissions and fuel consumption related applications that require both effective microscopic and macroscopic traffic stream representations. The proposed model embeds a consistent cross-resolution traffic state representation based on Newell’s simplified kinematic wave and linear car following models. Tightly coupled with a computationally efficient emission estimation package MOVES Lite, a mesoscopic simulation-based dynamic network loading framework DTALite is adapted to evaluate traffic dynamics and vehicle emission/fuel consumption impact of different traffic management strategies.  相似文献   

10.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

11.
The 1990 Clean Air Act Amendments (CAAA) and the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) have defined a set of transportation control measures to counter the increase in the vehicle emissions and energy consumption due to increased travel. The value of these TCM strategies is unknown as there is limited data available to measure the travel effects of individual TCM strategies and the models are inadequate in forecasting changes in travel behavior resulting from these strategies. The work described in this paper begins to provide an operational methodology to overcome these difficulties so that the impacts of the policy mandates of both CAAA and ISTEA can be assessed. Although the framework, as currently developed, falls well short of actually forecasting changes in traveler behavior relative to policy options designed to encourage emissions reduction, the approach can be useful in estimating upper bounds of certain policy alternatives in reducing vehicle emissions. Subject to this important limitation, the potential of transportation policy options to alleviate vehicle emissions is examined in a comprehensive activity-based approach. Conclusions are drawn relative to the potential emissions savings that can be expected from efficient trip chaining behavior, ridesharing among household members, as well as from technological advances in vehicle emissions control devices represented by replacing all of the vehicles in the fleet by vehicles conforming to present-day emissions technology.  相似文献   

12.
The current research direction in transportation-related air-quality modeling is towards development and implementation of modal emissions models that correlate emission rates to specific ranges of activity. This paper describes a methodology to identify roadway characteristics at signalized intersections which affect the fraction of vehicle activity spend in specific operating modes where modal emission rate models indicate elevated emissions occur to improve vehicle activity inputs to modal emissions models. Field studies using laser guns were conducted on-road collecting second-by-second activity for individual vehicles at signal-controlled intersections and roadway segments. Hierarchical tree-based regression analysis was used to identify on-road geometric and operational characteristics that influenced the fractions of vehicle activity spent in specific modes. Results indicated that queue position, grade, downstream and upstream per-lane hourly volume, distance to the nearest downstream signalized intersection, percent heavy vehicles, and posted link speed limit were the most statistically significant variables.  相似文献   

13.
This paper estimates the total embodied energy and emissions modal freight requirements across the supply chain for each of over 400 sectors using Bureau of Transportation Statistics Commodity Flow Survey data and Bureau of Economic Analysis economic input-output tables for 2002. Across all sectors, direct domestic truck and rail transportation are similar in magnitude for embodied freight transportation of goods and services in terms of ton-km. However, the sectors differ significantly in energy consumption, greenhouse gas emissions, and costs per ton-km. Recent pressure to reduce energy consumption and emissions has motivated a search for more efficient freight mode choices. One solution would be to shift freight transportation away from modes that require more energy and emit more (e.g., truck) to modes that consume and emit less (e.g., rail and water).Our results show there are no individual sectors for which targeting changes would significantly decrease the total freight transportation energy and emissions, therefore we have also looked at the prospect of policies encouraging many sectors to shift modes. There are four scenarios analyzed: (1) shifting all truck to rail, shifting top 20% sector mode choice, (2) based on their emissions, (3) based on a multi-attribute analysis, and (4) increasing truck efficiency (e.g., mpg). Increasing truck efficiency by 10% results in similar energy and emissions reductions (approximately 7% for energy and 6% for emissions) as targeting the top 20% of sectors when selected based on emissions, whereas selecting the top 20% based on availability to shift from truck results in slightly less reductions of energy and emissions. Implementing policies to encourage higher efficiency in freight trucks may be a sufficient short term goal while efforts to reduce truck freight transportation through sectoral policies are implemented in the long term.  相似文献   

14.
Many emission models have been developed for estimating the impact of transport policies on vehicle emissions. Macroscopic models, such as MOBILE and COPERT, are used for area analysis, while microscopic models, such as CMEM, are applied for corridor analysis. It is well known that driving dynamics are critical for estimating vehicle emissions. MOVES can be used for both macroscopic and microscopic emission analysis, and its advantage lies in the consideration of driving dynamics. Using a bottom-up approach, we study the impact of license plate restriction policy on vehicle emission reduction by localizing the emission rates in MOVES according to the vehicle emission standards in China. We implement the approach to evaluate the impact on the total vehicle emissions in Hangzhou, China before and after the implementation of license plate restriction policy. In the restricted region, the reductions of total Vehicle Kilometer Traveled (VKT) and total emissions are 9.6% and 6.9%, respectively. The result shows that the license plate restriction policy is effective in achieving the targeted emission reduction.  相似文献   

15.
The use of electric vehicles (EVs) is viewed as an attractive option to reduce CO2 emissions and fuel consumption resulted from transport sector, but the popularization of EVs has been hindered by the cruising range limitation and the charging process inconvenience. Energy consumption characteristics analysis is the important foundation to study charging infrastructures locating, eco-driving behavior and energy saving route planning, which are helpful to extend EVs’ cruising range. From a physical and statistical view, this paper aims to develop a systematic energy consumption estimation approach suitable for EV actual driving cycles. First, by employing the real second-by-second driving condition data collected on typical urban travel routes, the energy consumption characteristics analysis is carried out specific to the microscopic driving parameters (instantaneous speed and acceleration) and battery state of charge (SOC). Then, based on comprehensive consideration of the mechanical dynamics characteristics and electric machine system of the EVs, a set of energy consumption rate estimation models are established under different operation modes from a statistical perspective. Finally, the performance of proposed model is fully evaluated by comparing with a conventional energy consumption estimation method. The results show that the proposed modeling approach represents a significant accuracy improvement in the estimation of real-world energy consumption. Specifically, the model precision increases by 25.25% in decelerating mode compared to the conventional model, while slight improvement in accelerating and cruising mode with desirable goodness of fit.  相似文献   

16.
This paper evaluates the impacts on energy consumption and carbon dioxide (CO2) emissions from the introduction of electric vehicles into a smart grid, as a case study. The AVL Cruise software was used to simulate two vehicles, one electric and the other engine-powered, both operating under the New European Driving Cycle (NEDC), in order to calculate carbon dioxide (CO2) emissions, fuel consumption and energy efficiency. Available carbon dioxide data from electric power generation in Brazil were used for comparison with the simulated results. In addition, scenarios of gradual introduction of electric vehicles in a taxi fleet operating with a smart grid system in Sete Lagoas city, MG, Brazil, were made to evaluate their impacts. The results demonstrate that CO2 emissions from the electric vehicle fleet can be from 10 to 26 times lower than that of the engine-powered vehicle fleet. In addition, the scenarios indicate that even with high factors of CO2 emissions from energy generation, significant reductions of annual emissions are obtained with the introduction of electric vehicles in the fleet.  相似文献   

17.
Average roadway segment travel speeds play an important role in estimating stabilized running vehicle emissions. Currently stabilized, or hot, running emissions are computed based on speeds produced during the travel demand modeling process. Speed data from the travel forecasting models are widely recognized as being insufficiently accurate for air quality purposes. Frequently post-processing techniques are seen as the most cost-effective means of improving the accuracy of the speed estimates. Using the Sacramento Metropolitan area, this paper focuses on the impacts of different speed post-processors on regional peak period emissions inventories. The results indicated that most post-processed speeds produce consistently and significantly higher running emissions, particularly in locations with heavy traffic. The observed differences in emissions between different types of post-processed speeds vary with congestion level, pollutant type and the underlying approach encapsulated in the speed post-processor calculations. The Sacramento case study suggests that the post-processor used to develop speeds for the purposes of calculating on-road emissions inventories can significantly influence the emissions inventories.  相似文献   

18.
To better assess health impacts from diesel transportation sources, particle number emissions can be modeled on a road network using traffic operating parameters. In this work, real-time particle number emissions rates from two diesel transit buses were aggregated to the roadway link-level and modeled using engine parameters and then vehicle parameters. Modern statistical methods were used to identify appropriate predictor variables in the presence of multicollinearity, and controlled for correlated emission measurements made on the same day and testing route. Factor analysis helped to reduce the number of potential engine parameters to engine load, engine speed, and exhaust temperature. These parameters were incorporated in a linear mixed model that was shown to explain the variation attributable to link-characteristics. Vehicle specific power and speed were identified as two surrogate vehicle travel variables that can be used in the absence of engine parameters, although with a loss in predictive power compared to the engine parameter model. If vehicle speed is the only operating input available, including road grades in the model can significantly improve particle number emission estimates even for links with mild grade. Although the data used are specific to the buses tested, the approach can be applied to modeling emissions from other vehicle models with different engine types, exhaust systems, and engine retrofit technologies.  相似文献   

19.
This study quantifies the energy and environmental impact of a selection of traffic calming measures using a combination of second-by-second floating-car global positioning system data and microscopic energy and emission models. It finds that traffic calming may result in negative impacts on vehicle fuel consumption and emission rates if drivers exert aggressive acceleration levels to speed up to their journeys. Consequently by eliminating sharp acceleration maneuvers significant savings in vehicle fuel consumption and emission rates are achievable through driver education. The study also demonstrates that high emitting vehicles produce CO emissions that are up to 25 times higher than normal vehicle emission levels while low emitting vehicles produce emissions that are 15–35% of normal vehicles. The relative increases in vehicle fuel consumption and emission levels associated with the sample traffic calming measures are consistent and similar for normal, low, and high emitting vehicles.  相似文献   

20.
The ’MOT’ vehicle inspection test record dataset recently released by the UK Department for Transport (DfT) provides the ability to estimate annual mileage figures for every individual light duty vehicle greater than 3 years old within Great Britain. Vehicle age, engine size and fuel type are also provided in the dataset and these allow further estimates to be made of fuel consumption, energy use, and per vehicle emissions of both air pollutants and greenhouse gases. The use of this data permits the adoption of a new vehicle-centred approach to assessing emissions and energy use in comparison to previous road-flow and national fuel consumption based approaches. The dataset also allows a spatial attribution of each vehicle to a postcode area, through the reported location of relevant vehicle testing stations. Consequently, this new vehicle data can be linked with socio-demographic data in order to determine the potential characteristics of vehicle owners.This paper provides a broad overview of the types of analyses that are made possible by these data, with a particular focus on distance driven and pollutant emissions. The intention is to demonstrate the very broad potential for this data, and to highlight where more focused analysis could be useful. The findings from the work have important implications for understanding the distributional impacts of transport related policies and targeting messaging and interventions for the reduction of car use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号