首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The purpose of this paper is to clarify some important issues as regards ship speed optimization at the operational level and develop models that optimize ship speed for a spectrum of routing scenarios in a single ship setting. The paper’s main contribution is the incorporation of those fundamental parameters and other considerations that weigh heavily in a ship owner’s or charterer’s speed decision and in his routing decision, wherever relevant. Various examples are given so as to illustrate the properties of the optimal solution and the various trade-offs that are involved.  相似文献   

2.
Strict limits on the maximum sulphur content in fuel used by ships have recently been imposed in some Emission Control Areas (ECAs). In order to comply with these regulations many ship operators will switch to more expensive low-sulphur fuel when sailing inside ECAs. Since they are concerned about minimizing their costs, it is likely that speed and routing decisions will change because of this. In this paper, we develop an optimization model to be applied by ship operators for determining sailing paths and speeds that minimize operating costs for a ship along a given sequence of ports. We perform a computational study on a number of realistic shipping routes in order to evaluate possible impacts on sailing paths and speeds, and hence fuel consumption and costs, from the ECA regulations. Moreover, the aim is to examine the implications for the society with regards to environmental effects. Comparisons of cases show that a likely effect of the regulations is that ship operators will often choose to sail longer distances to avoid sailing time within ECAs. Another effect is that they will sail at lower speeds within and higher speeds outside the ECAs in order to use less of the more expensive fuel. On some shipping routes, this might give a considerable increase in the total amount of fuel consumed and the CO2 emissions.  相似文献   

3.
This paper deals with two speed optimization problems for ships that sail in and out of Emission Control Areas (ECAs) with strict limits on sulfur emissions. For ships crossing in and out of ECAs, such as deep-sea vessels, one of the common options for complying with these limits is to burn heavy fuel oil (HFO) outside the ECA and switch to low-sulfur fuel such as marine gas oil (MGO) inside the ECA. As the prices of these two fuels are generally very different, so may be the speeds that the ship will sail at outside and inside the ECA. The first optimization problem examined by the paper considers an extension of the model of Ronen (1982) in which ship speeds both inside and outside the ECA are optimized. The second problem is called the ECA refraction problem, due to its conceptual similarity with the refraction problem when light travels across two different media, and also involves optimizing the point at which the ship crosses the ECA boundary. In both cases the objective of the problem is to maximize daily profit. In addition to mathematical formulations, examples and sensitivity analyses are presented for both problems.  相似文献   

4.
In this paper, we consider the continuous road network design problem with stochastic user equilibrium constraint that aims to optimize the network performance via road capacity expansion. The network flow pattern is subject to stochastic user equilibrium, specifically, the logit route choice model. The resulting formulation, a nonlinear nonconvex programming problem, is firstly transformed into a nonlinear program with only logarithmic functions as nonlinear terms, for which a tight linear programming relaxation is derived by using an outer-approximation technique. The linear programming relaxation is then embedded within a global optimization solution algorithm based on range reduction technique, and the proposed approach is proved to converge to a global optimum.  相似文献   

5.
The traditional distribution planning problem in a supply chain has often been studied mainly with a focus on economic benefits. The growing concern about the effects of anthropogenic pollutions has forced researchers and supply chain practitioners to address the socio-environmental concerns. This research study focuses on incorporating the environmental impact on route design problem. In this work, the aim is to integrate both the objectives, namely economic cost and emission cost reduction for a capacitated multi-depot green vehicle routing problem. The proposed models are a significant contribution to the field of research in green vehicle routing problem at the operational level. The formulated integer linear programming model is solved for a set of small scale instances using LINGO solver. A computationally efficient Ant Colony Optimization (ACO) based meta-heuristic is developed for solving both small scale and large scale problem instances in reasonable amount of time. For solving large scale instances, the performance of the proposed ACO based meta-heuristic is improved by integrating it with a variable neighbourhood search.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号