首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
盾构机姿态控制点测量模型及其应用   总被引:1,自引:0,他引:1  
李国华 《隧道建设》2006,26(Z2):19-22
盾构机姿态控制点是盾构机导向系统的重要组成部分,是计算盾构机初始参数和检测盾构机实时姿态的依据.盾构机姿态控制点测量首先要建立测量模型,即采用导线测量和三角高程测量方法,通过对盾构机刀头和中体圆柱体外直径精密测量,拟合计算出盾构机刀头和中体中心三维坐标,建立盾构机坐标系统,解算姿态控制点在盾构机坐标系统内的三维坐标,进而由姿态控制点计算盾构机的姿态.通过在广州地铁三号线[市桥站-番禺广场]盾构区间对德国海瑞克盾构机的测量实验,此模型能求解盾构机姿态控制点,并可以检测盾体的形变.  相似文献   

2.
地铁盾构机掘进实时姿态定向测量的研究   总被引:4,自引:0,他引:4  
王超领  张永超 《隧道建设》2007,27(6):33-35,38
简明介绍了地铁建设中盾构机姿态定位测量方法,并结合南京地铁一号线某盾构区间隧道工程实际,着重分析了在对盾构推进过程中如何用棱镜法精确地确定盾构机的掘进方向和盾构机姿态问题,得出一些有益的结论,可供地铁隧道工程施工参考。  相似文献   

3.
为了研究盾构机掘进姿态的控制方法,以长沙地铁2号线望梅区间隧道为工程依托,通过对现场盾构机穿越起伏基岩地层时软硬岩高度比和围岩强度比与油缸推力比的统计分析,得出了盾构区间直线段和曲线段地层由软到硬和由硬到软的合理的油缸推力比。将盾构油缸推力比应用到工程实际中,得出相应的直线段和曲线段的水平、竖向偏差,且均满足轴线偏差不得超过50 mm的标准要求,从而得出盾构机穿越起伏基岩地层合理掘进姿态的控制方法。  相似文献   

4.
杨灿 《隧道建设》2006,26(Z2):72-74
测斜仪系统是测量盾构机姿态参数的重要设备,保证盾构机沿设计隧道中心线掘进.但三菱的测斜仪损坏时,国际采购不仅成本高,更主要的是采购周期长,会造成很大的停工损失.国产化替代不仅可以节约成本,保证正常的生产进度,而且可以在一定程度上提高使用效果.测斜仪系统国产化关键是倾斜计和转换模块的替代.着重介绍了倾斜计的替代和选型注意事项,转换模块的替代方法,初始值标定程序及替代后系统可能出现的故障情况及处理方法.国产化改造简便了维修,提高了使用效果,有利于提高盾构机国产化技术水平.  相似文献   

5.
为了探明盾构掘进过程中机-土相互作用的机理,指导盾构姿态的控制和调整,针对水平偏角变化对盾构与土相互作用的影响这一问题,对作用于盾壳周围土压力的理论计算方法以及水平偏角预测模型进行研究。首先基于地基反力曲线,通过等效弹簧近似建立盾构与土的相互作用模型,同时基于几何分析可计算盾构水平偏角变化过程中周围土层发生的位移,从而得到作用于盾构外壳的周围土压力的理论计算方法。然后引用改进的松动土压力计算方法,得到盾构初始土压力的计算方法,解决盾构水平偏角计算的初始边界问题,并结合土对盾构作用荷载的计算方法得到盾构水平偏角计算方法。基于所建立的理论计算模型,对盾构机质量、地层类型以及地层开挖损失率等因素对盾构-土相互作用的影响进行分析和讨论。最后,结合济南地铁R2线盾构隧道工程,对盾构的水平偏角以及相关掘进参数进行实时监测,并与盾构水平偏角理论值进行对比分析。研究结果表明:盾构质量以及地层开挖损失率对盾构在水平面上进行姿态的影响较小;不同地层类型以及地层的土压力系数对盾壳与土相互作用的影响较大;通过工程应用发现盾构水平偏角理论值的变化趋势与实测值基本一致,但由于盾构自身施加的调姿弯矩无法完全作用于盾构机,因此理论值普遍大于实测值。  相似文献   

6.
提出了基于自动深度学习(AutoDL)算法和多目标优化算法的结合可实现数据驱动的姿态偏差控制指导,用于盾构掘进姿态的预测与控制,以解决现有盾构掘进姿态预测中所面临的执行难度高、成本高、效率低等问题,可用于自动精准地预测盾构掘进姿态随着工程进展的动态变化趋势,并针对盾构机施工状态执行多目标优化算法,快速自动搜寻最优策略,实时调整合适的盾构操作参数,减少对于现场操作人员经验和主观判断的依赖。以上海市天然气主干管网崇明岛-长兴岛-浦东新区五号沟LNG站管道工程隧道A线工程为例,展示该算法框架的优越性。研究结果有助于降低深度学习进入盾构智能控制领域的门槛,推动智能盾构发展。  相似文献   

7.
本文结合数台盾构机及TBM施工设备监造的实践与经验,阐述了盾构机及TBM监造工作的内容和模式,通过实例介绍了盾构机监造点的设置,并对影响盾构机制造进度的因素进行了分析。  相似文献   

8.
针对盾构机电气系统故障隐患较多的情况,对其总体设计的合理性和可靠性进行了详细分析,提出了盾构机电气系统设计的相关改进措施,给出了比较合理的电气系统图,提高了盾构机电气系统的可靠性和工作效率,为盾构机的设计及使用提供了参考依据。  相似文献   

9.
综合考虑了土压平衡式盾构机的直径、刀盘开口率、刀盘与土体的摩擦系数、盾构机的埋深、盾构机施工地层的土性、盾构机和地层之间的相互关系、盾构机推进速度以及螺旋输送机转速等参数的影响因素,推导出刀盘扭矩的理论模型。在盾构机模拟试验平台上进行试验,分析了两种典型开口率的刀盘在3种典型土层中扭矩的变化及土仓压力对刀盘扭矩的影响。分析结果表明,刀盘扭矩的理论模型与试验结果相符,并能满足盾构机实际施工的要求。  相似文献   

10.
在复合软土地层作业下的郑州地铁工程开始步入快车道。为郑州地铁一号线作业的是两台直径为6.3 m的罗宾斯土压平衡盾构机。其中,第一台盾构机已经创下月进尺720m的项目记录,日进尺达22环。这个成绩不单超越了同项目里的其他9台盾构机,而且还创下了中国土压平衡盾构机在6~7m直径类盾构机的最快进尺记录。罗宾斯的两台盾构机分别于2010年的11月和12月投入使用。其中一台盾构机已顺利地在2011年的3月29日贯通了中段明挖站点。  相似文献   

11.
杭州地区某盾构区间施工地表变形预测参数的分析与确定   总被引:1,自引:0,他引:1  
赵军 《隧道建设》2015,35(10):1003-1009
以杭州地铁某盾构区间隧道施工为背景,分别对盾构隧道上浮和盾构隧道水平2种工况建立计算模型,并计算盾构掘进施工引起的地表沉降,在每种模拟工况计算中取不同的地层损失率对地表沉降进行计算。将不同工况、不同地层损失率的计算结果与实测数据进行对比分析,并利用Peck公式计算结果进一步确认,以确定不同工况下的地层损失率:盾构隧道上浮工况下地层损失率约为1.9%;盾构隧道水平工况下地层损失率约为1%。以期为杭州和其他地区盾构施工引起的地表沉降预测提供参考。  相似文献   

12.
基于苏埃通道工程盾构施工过程中下沉量分析   总被引:1,自引:0,他引:1  
盾构开挖隧道主要分为隧道掘进和管片拼装2大工序。在管片拼装过程中盾构主机处于静止状态,在此过程中将会产生主机整体下沉和栽头的现象。为了尽量避免下沉和栽头现象的出现,需要对主机的下沉量和栽头量的范围进行预测,在盾构隧道掘进工序末事先调整好姿态,使盾构在静止过程中的下沉量和栽头量正好与姿态调整量相抵消,从而保证隧道轴线与设计轴线一致。通过对盾体周围受到水土压力以及地基对盾构的反力进行分析计算,并利用Matlab软件对4种不同地层进行建模分析,求得盾构主机在各地层的下沉量和栽头量的范围。通过计算,在苏埃跨海通道工程盾构掘进段项目中,主机在淤泥质土等松软地层中姿态变化最大,最大栽头量约为0.38 m,整体下沉约0.12 m;在密实中粗砂地层中姿态变化最小,最大栽头量约0.13 m,整体下沉约0.04 m。通过得出的栽头量和下沉量的范围,进而实现对盾构姿态的提前调整。  相似文献   

13.
大型下沉式盾构掘进机综合模拟试验平台总体设计   总被引:1,自引:0,他引:1  
该文介绍了大型下沉式盾构掘进机综合模拟试验平台的总体设计。它是一套大型、多功能的试验平台,包括模拟盾构机、组合式液压加载系统、监控测量系统、洞门密封系统等部分。它可满足不同断面形状、不同类型、不同土层的盾构掘进模拟试验,其规模、试验能力、数据采集等方面都处于国内领先、国际先进水平。  相似文献   

14.
钱晓华 《城市道桥与防洪》2020,(1):116-120,M0014
随着城市地铁的不断发展,盾构法施工环境愈来愈复杂、风险控制要求也愈来愈严格以郑州市轨道交通4号线工程盾构法隧道施工为背景,某区间盾构机下穿人工湖--龙湖为工程施工实例:对盾构机在砂性地层中长距离下穿龙湖风险进行分析,对盾构机下穿龙湖施工技术进行研究与优化,提出一套关于盾构机下穿人丁湖的施工技术措施,确保盾构机安全顺利下穿龙湖,取得了良好的施工效果,以期为今后类似工程积累经验、提供技术参考.  相似文献   

15.
介绍了矩形盾构机的特点和技术参数,分析了其施工优势,对矩形盾构机模拟掘进试验进行了设计,完成了矩形盾构机掘进模拟土层试验和切削不同硬度混凝土试验,通过采集掘进参数、监测周围土层情况,分析了矩形盾构掘进对周围土层的影响。试验结果表明,矩形盾构机能在不同的地层条件下掘进,但切削混凝土能力有限。  相似文献   

16.
结合西安地铁1号线盾构区间的工程,通过始发前联系测量、始发测量、掘进测量和贯通测量4个工程阶段的测量详细阐述了地铁区间隧道盾构法的测量方法;同时分析了地铁区间隧道盾构法施工的技术参数、施工进度及过站方式等,可为以后西安地区地铁建设过程中盾构法施工的测量提供参考依据.  相似文献   

17.
随着中国交通建设和城市建设的迅猛发展,越江跨海盾构隧道工程大量增加,而且工程规模(隧道的直径和长度等)和水压条件也在增加。现阶段,仍未明确定义高水压,但一般以0.5 MPa作为高水压的分界线。近期,中国在长江、黄河以及珠江等所建设的高铁、公路以及地铁等盾构隧道工程水压均超过了0.5 MPa,正在筹划建设的琼州海峡隧道等水压更大,将高达2.0 MPa,面临巨大挑战。为此,国家决定针对超高水压(2.0 MPa)越江海长大盾构隧道工程安全问题展开“九七三”计划基础研究。研究采用理论分析、物理试验(室内、室外试验和模型试验)、数值模拟分析和监控测量等多种手段,针对其中涉及的多元、多相和多场耦合物理本质,对高水压水土与结构静动相互作用机理、盾构掘进中的动静力学机理、隧道结构特性及防水特性动态演化机理等核心问题进行深入系统的基础研究,提出了高水压下考虑渗流条件下的水土荷载计算理论和深水盾构隧道地震分析方法,建立了“机-土”动态作用力学模型,提出了盾构姿态、刀具磨损、开挖面稳定和高压成膜及闭气控制方法,提出了高水压大直径盾构隧道衬砌结构设计理论和高水压盾构隧道接缝长期防水安全与监控技术,最终形成超高水压越江海长大盾构隧道工程安全控制理论体系。为确保超高水压越江海长大盾构隧道工程安全提供设计理论依据,为实现大直径泥水盾构在超高水压等复杂条件下安全长距离施工提供理论支持。  相似文献   

18.
上海长江隧道工程采用φ15.43m泥水气盾构掘进机,一次掘进距离7.5km,隧道直径和一次推进距离均创世界之最。工程难度大、风险高,是上海长江隧桥项目的关键控制节点工程。该文主要介绍了工程概况和超大直径、超长距离盾构掘进施工及其风险控制措施。  相似文献   

19.
盾构法隧道出洞段施工是盾构施工的关键环节,风险控制点多面广,风险管理是其中的重点工作。该文以上海长江越江隧道工程上行线盾构出洞段施工为工程实例,阐述了盾构出洞如盾构设备管理、洞口土体加固、浅覆土段推进、止水密封装置、隧道上浮、地面建构筑保护等重要风险控制点的风险分析及控制措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号