首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
车辆—轨道耦合系统随机振动响应特性分析   总被引:5,自引:2,他引:3  
基于车辆—轨道耦合动力学理论, 通过建立车辆—轨道垂横耦合模型, 利用时域数值积分法进行了耦合系统的随机响应分析。在此基础上, 采用周期图法估计出车辆—轨道垂向和横向随机响应功率谱密度PSD, 并进行了谱分析。最终得到了车辆—轨道耦合系统随机振动的基本规律  相似文献   

2.
客运专线铁道车辆随机振动特性   总被引:1,自引:0,他引:1  
为分析客运专线车辆在轨道随机不平顺作用下的振动规律,提出了轨道随机不平顺人工短波的概念,给出了短波的模拟样本.在同时考虑轨道高低不平顺和水平不平顺的基础上,采用德国高速低干扰谱与人工短波样本合成的轨道随机不平顺样本作为车辆-轨道耦合振动系统的激励,对车辆的随机振动进行了分析.探讨了轮轨动作用力、车辆各部件随机振动特性及其随列车运行速度变化的规律.研究结果表明,随列车运行速度提高,客运专线车辆各部件的随机振动响应如振动加速度、轮轨力、位移等均呈显著增大的趋势,其中以轮对加速度的变化最为明显,构架加速度、车体加速度和轮轨力次之,位移变化相对较小.  相似文献   

3.
轨道不平顺激励下直线电机车辆/轨道动力响应   总被引:2,自引:0,他引:2  
为了提高直线电机轮轨交通车辆运行的安全性与乘坐舒适性, 分析了车轨结构特征, 建立了直线电机车辆/板式轨道横、垂向动力学模型。通过三角级数法得到轨道随机不平顺的时间序列, 以其作为系统激励, 分析了直线电机车辆与轨道的随机振动特性。把轨道不平顺描述为余弦函数, 研究了高低不平顺与方向不平顺的波长和幅值对系统动力响应的影响规律。计算结果表明: 磁轨气隙变化的频率主要集中在1.2~2.0Hz范围内, 波长小于10m的高低和方向不平顺对系统轮轨作用力、脱轨系数及轮重减载率等影响显著增大, 应予以重点控制。  相似文献   

4.
为了高效选取轨道不平顺随机样本, 以满足车辆-轨道系统随机动力与可靠度分析中的激振源遍历性要求, 依据轨道随机不平顺的弱平稳与谱相似特征, 提出了一种轨道不平顺概率模型; 采用离散概率积分和统计方法, 在时域中将大量轨道不平顺检测信号分成若干个时程序列, 对每个序列采用谱分析法计算其统计功率谱密度分布; 采用矩阵法对轨道不平顺功率谱密度函数进行集合表征, 视每条谱线在不同频率点的功率谱密度概率具有累加性, 采用单一频率下的功率谱密度概率分布推知整条谱线的出现概率; 采用通用随机模拟方法选取代表性轨道谱, 并反演随机不平顺序列; 实测了某高速铁路约269km的轨道高低和方向不平顺, 基于车辆-轨道耦合动力学理论, 从轨道不平顺模拟幅值与车辆-轨道系统动力响应的概率密度分布出发, 对比了轨道不平顺概率模型与轨道不平顺随机模型的计算结果, 以验证轨道不平顺概率模型的正确性和高效性。计算结果表明: 以2种模型生成的轨道随机不平顺为激振源, 获得的车辆-轨道系统动力响应分布熵差异小于2%, 2种模型均能准确表达不平顺激扰特性; 为保证模拟与实测不平顺的概率密度分布一致, 采用随机模型和概率模型分别需要生成131和33个随机样本, 概率模型具有更高的分析效率; 在给定计算工况下, 轮轨力和车体加速度的幅值分别为38~152kN和-0.042g~0.043g (g为重力加速度), 均未超过《高速铁路设计规范》 (TB 10621—2014) 中的限值(轮轨力为170kN, 车体加速度为0.25g), 表明此高速铁路轨道不平顺状态较优, 行车安全性和舒适性可以得到保证。  相似文献   

5.
车辆-轨道耦合动力学在轨道下沉研究中的应用   总被引:1,自引:0,他引:1  
将车辆-轨道耦合振动模型和轨道累积下沉计算模型相结合,以轨道结构动力学响应参量和轨面高低不平顺状态变化作为两者间的联结纽带,从车辆-轨道耦合动力学角度研究了轨道的下沉变形特性.研究结果表明,随着轨道动荷载重复作用次数的增加,轨道下沉量逐渐累积;轨面初始不平顺对轨道下沉变化影响较大;受轨道累积下沉的影响,轮轨力、轨道结构响应加大.  相似文献   

6.
本文应用车辆-轨道系统耦合动力学理论,对车辆经过一段由缓-圆-缓组成的线路进行了车辆的脱轨稳定性分析。通过对车辆在耦合动力学模型与传统车辆动力学模型下脱轨道稳定性之分析比较,指出了进行车辆脱轨的耦合动力学分析必要性。  相似文献   

7.
8.
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Euler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

9.
车辆-轨道系统耦合高频振动的研究   总被引:3,自引:0,他引:3  
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Eu ler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

10.
基于Timoshenko梁模型的车辆-轨道耦合振动分析   总被引:6,自引:1,他引:6  
运用车辆-轨道耦合动力学理论,建立了基于Timoshenko梁钢轨模型的车辆-轨道耦合振动模型,分析了钢轨的固有振动特性,初步探讨了车辆-轨道系统的动力响应,结果表明,Timoshenko梁钢模型在固有振动及强迫振动两方面均与Euler梁钢轨模型有明显不同,前者能更详细地描述钢轨的高频特性。  相似文献   

11.
基于柔性轨道研究了随机不平顺下磁浮车辆的动力学特性, 在将轨道受力分解为分段链式结构的基础上, 提出了一种磁浮车辆垂向悬浮稳定性分析方法, 定义了不同悬浮力作用于各自悬浮点时柔性轨道的振动固有频率和模态矩阵; 建立了轨道分段链式结构的离散形式和轨道结构的运动方程, 采用虚拟激励法将轨道不平顺产生的随机激励转化为系统输入激励, 并将轨道随机高低不平顺作为振动激励源进行车轨振动控制; 在不同反馈控制参数下采用电压反馈双环PID控制器数值仿真车辆的悬浮状态, 并分析了轨道随机不平顺激励下反馈控制参数对磁浮系统稳定性的影响。研究结果表明: 当磁浮车辆速度为50~80 km·h-1, 位移反馈参数、速度反馈参数和电流反馈参数分别为140 000、50、500时, 车辆可以从起始间隙16 mm快速定位到平衡位置间隙9 mm, 在2.2 s时即可稳定悬浮, 系统的超调量和稳态误差分别为1.50和0.13 mm, 且系统振动频率趋近于0;当位移反馈参数、速度反馈参数和电流反馈参数分别为15 000、50、400时, 磁浮车辆在轨道随机不平顺作用下的悬浮稳定性变差, 系统在9 s左右逐渐趋于稳定, 但仍旧在平衡位置上下浮动, 且系统振动频率和振动幅值分别为7 Hz和0.5 mm; 当磁浮车辆的速度超出50~80 km·h-1时, 第1组反馈控制参数不再适用, 磁浮系统在1.7 s左右发散, 车辆失稳, 表明在不同车辆速度和反馈控制参数的作用下, 轨道随机不平顺能显著影响磁浮车辆的悬浮稳定性。  相似文献   

12.
运用经过大量线路实车运行试验验证的车辆-轨道耦合动力学仿真软件TTISIM,对传统车辆动力学和车辆-轨道耦合动力学两种类型模型的横向动力性能进行了比较与分析。结果表明:车辆无论是在直线上运行 是通过曲线轨道和道岔时,采用传统模型计算所得的轮轨横向相互动作用力均较采用耦合模型计算的大;仿真计算车辆蛇行失稳临界速度时,采用前一模型俐到的结果较后者偏高;而两者计算所得的车辆垂向与横向振动差别甚小。  相似文献   

13.
为了提高车辆-轨道耦合动力学系统可视化仿真的逼真度, 采用迹线法计算了车轮踏面接触轮廓面, 以平面方式表现轮轨动态接触关系, 钢轨以梁的形式参与振动, 通过实时建立具有一定垂向、横向和扭转振动形态的钢轨模型来模拟钢轨的振动行为。仿真结果表明, 在保证优良的实时性的同时, 可以清晰地观察轮轨接触点的变化情况, 免去了在复杂的三维场景中变换视点的操作, 使轮轨动态接触关系更简洁, 通过实时创建钢轨模型, 使钢轨振动行为的模拟更逼真。  相似文献   

14.
为深入研究快速及高速行车条件下车辆一道岔.桥梁的动态相互作用,将车辆、道岔区轨道和桥梁作为一个整体,建立了车辆一道岔-桥梁耦合系统动力分析模型,用数值模拟的方法探讨了高速行车条件下道岔区轨道与桥梁结构的动力特性及行车安全性和舒适性.采用竖、横向挠跨比作为衡量桥梁刚度的指标,以高速铁路中最常用的6种标准跨度连续梁桥为对象进行计算和分析,通过获得各种工况下的车体振动加速度、减载率、脱轨系数、桥梁振幅和振动加速度等动力响应,确定车辆一道岔.桥梁动力耦合条件下24,32,40和48m跨度连续梁桥的合理刚度分别为1/20000,1/9000,1/5000和1/3000.研究结果表明,除静力分析应满足有关规定外,还应根据具体的道岔结构、运营条件和桥梁结构进行耦合动力分析,以保证高速行车条件下列车通过桥上道岔时的安全性和舒适性.  相似文献   

15.
横风下车辆-轨道耦合动力学性能   总被引:2,自引:0,他引:2  
应用多体系统动力学理论, 建立了车辆-轨道耦合动力学模型, 利用新型显式积分法求解动力学方程组, 利用赫兹非线性弹性接触理论计算轮轨法向力, 利用沈氏理论计算轮轨蠕滑力, 编写了车辆-轨道耦合动力学计算程序, 研究了轨道结构对高速列车动力学性能的影响, 分析了不同横风环境下高速列车动力学性能和列车姿态。研究结果表明: 当列车运行速度为350 km·h-1, 横风速度为15 m·s-1时, 车体最大横向加速度为0.45 m·s-2, 车体最大垂向位移为24.5 mm, 车体向背风侧横移80.0 mm, 车体最大侧滚角为2.23°; 一位轮对的最大轮重减载率接近0.80, 二、四位轮对均向背风侧横移, 背风侧车轮易发生爬轨现象, 二位轮对的横向位移最大, 为7.4 mm。在横风下, 高速列车的运行安全性指标变差, 车体振动加速度变化不明显, 车体向背风侧横移。在所有轮对中, 二位轮对最危险。  相似文献   

16.
考虑到多刚体系统动力学研究方法在建模及计算方面的局限性,将有限元法引入到机车车辆/轨道大系统的垂向耦合振动研究中来.为了真实模拟在轨道上不同位置的轮轨接触关系,用有限元参数二次规划法求出了轮轨等效接触刚度曲线,建立了统一的机车车辆/轨道耦合系统.通过建立系统的有限元分析模型,利用精细时程积分算法求解系统振动方程,分析研究了机车车辆在无限长轨道上运行时,在轨道不平顺激扰下,轮/轨间相互作用力、机车车辆/轨道系统中各部件的振动加速度及位移变化规律.研究结果表明,该方法不但可行,而且具有其它传统方法无可比拟的优越性.  相似文献   

17.
磁浮列车车辆—轨道耦合振动及悬挂参数研究   总被引:5,自引:1,他引:4  
基于磁浮列车车辆-轨道耦合振动模型,建立了动力学方程,利用编制的仿真程序对车辆轨道的耦合动进行仿真分析,对于悬挂参数特别是模块侧滚约束参数的影响进行定量研究,确定了悬挂参数的取值范围,并据此对青城山磁浮试验车的悬挂参数和设计提供出了建议。  相似文献   

18.
轨道不平顺非线性预测模型   总被引:7,自引:2,他引:5  
分析了轨道高低不平顺非线性预测理论, 根据广深线运量和轨、车检测数据, 采用多元回归分析得到广深线轨道高低不平顺非线性预测模型, 将该模型用于预测未来轨道不平顺的发展情况, 并与实际检测值进行对比和误差分析。结果表明, 两者图形趋势较为一致, 说明用该模型预测轨道高低不平顺发展趋势是可行的。  相似文献   

19.
轨道扭曲不平顺安全限值的研究   总被引:6,自引:0,他引:6  
本文用车辆-系统耦合动力学的理论,分析了轨道扭曲不平顺的幅值对车辆动力学性能的影响,并以《铁道车辆动力学性定办法和试验鉴定规范》中规定的第二限度(安全限度)为评定准则,提出了轨道扭曲不平顺的安全限值,并对其临时补修标准作出了评价。  相似文献   

20.
250km/h高速铁路轨道不平顺的安全管理   总被引:7,自引:1,他引:7  
利用根据车辆-轨道耦合动力学思想所建立车辆-轨道垂横耦合模型,在充分考虑多种波长并存的情况下,仿真计算了250km/h高速铁路各种轨道不平顺的管理目标值。计算结果与日本和德国高速铁路轨道不平顺的经验管理目标值基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号