首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对某200 km/h速度等级B_0-B_0客运机车跨线运行安全性,采用多体系统动力学软件SIMPACK建立了该机车动力学模型,在不同轮缘厚度标准踏面的使用及客运专线轨距和轮对内侧距公差极限条件下,选取4种轮轨间隙极限工况进行动力学仿真分析。结果表明:在轮轨间隙极限工况下,该机车的横向稳定性,直线和曲线通过性能均可以满足安全运行的要求;随着轮轨间隙的增大,该机车的动力学性能尤其是横向性能下降。  相似文献   

2.
为了减小米轨机车在通过小半径曲线时所造成的轮轨磨耗,基于车辆系统动力学理论,采用SIMPACK软件建立C_0-C_0米轨机车动力学模型,对机车通过小半径曲线时的动力学性能进行研究。计算了不同超高和轨距情况下的机车轮对冲角、轮轨横向力、轮轴横向力和轮轨磨耗功率,并分析了车轮轮缘和踏面上的磨耗功率在车辆运行过程中随超高和轨距变化的规律。结果表明:超高率与磨耗功率成正比,线路设置超高时应尽量使列车处于适当的欠超高状态;轨距加宽量与磨耗功率成正比,且轨距变化对机车各项动力学性能指标的影响均较超高率更为显著;轨距加宽不但不能有效减轻小半径曲线上的钢轨侧磨和轮轨横向力,反而会使其增大。因此在实际工程中曲线区段应避免不必要的轨距加宽,并经常检测轨距,以防不良轨距变化导致轮轨异常磨耗。  相似文献   

3.
文章利用多体动力学软件SIMPACK建立了200 km/h速度等级机车动力学模型,分析了两种形式竖曲线的半径对垂向加速度、轮轨垂向力和轮重减载率的影响,并且根据现行铁道机车车辆动力学性能评定规范加以评价。结果表明:随着竖曲线半径的增大,车体垂向加速度逐渐减小,并趋于平稳,竖曲线半径对轮轨垂向力和轮重减载率影响较小;考虑轨道随机不平顺时,根据车体垂向加速度判断,凸形竖曲线略好于凹形竖曲线;随着半径的变化,机车轮轨垂向力和轮重减载率变化不大,且均属优良范围。  相似文献   

4.
目的:为了探究轨道的多种随机不平顺(高低、水平、轨距和轨向)在不同列车速度下对地铁隧道壁垂向振动加速度和轮轨力的影响,以提升行车品质,特进行本研究。方法:以地铁A型车为例,运用动力学分析软件建立考虑柔性轮对的车辆刚柔耦合系统动力学模型。将轨道和轮对视为柔性体,其余部件视为刚体,通过施加多种随机不平顺和改变车辆速度并考虑波磨来模拟不同工况,进行仿真计算。同时采用快速傅里叶变换方法对仿真计算结果进行时域和频域分析,研究隧道壁和轮轨力的振动特性。结果及结论:研究结果表明:随着车辆运行速度的增大,隧道壁垂向振动加速度的峰值有所提高,优势频率分布范围会有稍许扩大,高频成分增多;车轮间相互作用加剧,垂向轮轨力有所增大;隧道壁在4~200 Hz范围内的振动主频为63 Hz,不随速度变化而变化,但加速度级峰值会有所增大。  相似文献   

5.
重载货车轴重与速度匹配关系研究   总被引:1,自引:0,他引:1  
基于重载货车轨道耦合动力学模型,采用机车车辆与线路最佳匹配设计方法,进行货车轴重与速度的匹配研究.结果表明:25,27,30和40t轴重重载货车容许通过轨道低接头的速度应分别小于110,100,90和60km·h-1;40t轴重重载货车以60km·h-1速度在直线线路上运行时,其轮轨垂向力为249.6kN,非常接近英国铁路250kN轮轨垂向力的限值;在我国现有以60kg·m-1轨为主的干线铁路上开行30和40t轴重重载货车,对轨道结构的破坏比现有低轴重货车严重得多,但开行27t轴重重载货车是可行的;40t轴重重载货车在600m半径的曲线轨道上以40~120km·h-1速度运行时,轮轨垂向力最大值超过了英国铁路的250kN轮轨垂向力限值,轮轨横向力最大值非常接近我国《铁道车辆动力学性能评定及试验鉴定规范》所规定的77.80kN容许限值,另外轮轨磨耗功非常大,因此40t轴重重载货车还不能直接应用于我国现有60kg·m-1钢轨的轨道.  相似文献   

6.
为研究轨道参数对单轴转向架曲线通过性能的影响,运用SIMPACK软件建立了单轴转向架车辆动力学模型,采用轮轨横向力、脱轨系数、轮重减载率等作为评价指标,对曲线半径、超高、轨距等轨道参数进行仿真分析。结果表明:曲线半径、轨距和轨底坡对车辆运行性能的影响较为显著,随着曲线半径的增加,各项指标最大值均减小,增大曲线半径能够提高钢轨的使用寿命;曲线上设置适量欠超高能够改善运行性能,提高车辆安全性;小半径曲线上适当加宽轨距和增大轨底坡可以减小轮轨作用力,提高车辆曲线通过性能,减轻轮轨磨耗,延长钢轨使用寿命。  相似文献   

7.
为使两种不同轨距的货车顺利通过道岔,设计了1 435 mm与1 000 mm轨距三线套轨铁路道岔。基于多体动力学理论建立车辆-套轨铁路道岔的轮轨系统空间耦合动力学模型,计算分析货车侧向通过标准轨距铁路道岔及直向通过米轨铁路道岔时的动力学响应,并研究过岔速度对动力学响应的影响。结果表明:货车侧向过岔时,车体横向加速度最大值出现在连接部分,其他动力学评价指标最大值出现在辙叉区,且不同速度下动力学响应波动较大;货车直向过岔时,各动力学评价指标最大值均出现在辙叉区;货车以45~70 km/h侧向过岔时,轮轨力、脱轨系数存在较大波动;货车以95 km/h以上速度直向过岔时,动力学响应明显增大。为使货车在满足安全限值的条件下侧向通过标准轨距铁路道岔、直向通过米轨铁路道岔,侧向过岔速度不应高于65 km/h,直向过岔速度不应高于105 km/h。  相似文献   

8.
对于重载机车来说,机车轴重的增加可以提高机车牵引力或改善机车的黏着性能,同时机车轴重的增加对机车动力学性能也有较大的影响。采用测力轮对法分别对23,25,27t和30t轴重机车的的动力学性能进行测试,并对测试结果进行数据处理、换算和分析,研究了重载机车轴重增加后对机车运行安全性的影响,同时也对振动加速度测试结果进行了分析,探讨了轴重增加对运行平稳性的影响。  相似文献   

9.
《机车电传动》2021,(4):34-41
为提高车辆系统振动响应的计算精度,基于刚柔耦合动力学理论,将轮对、构架和轨道均考虑为柔性体,建立了考虑多柔性因素的车辆-轨道耦合动力学模型,对比分析了轮轨间动态作用的振动特性,研究了多柔性因素下的轮轨接触动态性能和运行平稳性能。结果表明:多柔性因素下,车轮振动加速度在垂向上有较大变化,柔性部件的横向运动出现"错位";各项动力学指标均有变化;车体加速度在垂向上最大增幅为36.7%,而横向上却与线路半径有一定的关系;横向上,多柔性因素下车体Sperling指数降低,降幅为9.5%,而垂向上该指数却增高16.6%。  相似文献   

10.
为研究米轨机车车轮多边形化对机车系统动力学性能的影响,建立米轨机车动力学模型,研究车轮多边形的谐波阶数和波深幅值对动力学性能的影响,并计算不同谐波阶数下车轮多边形的波深限值,最后对车轮多边形和轨道激励共同作用下轮轨垂向力的变化趋势进行分析。结果表明:由于米轨机车运行速度较低,车轮多边形化会导致低频振动,使得车体振动响应增大;车轮多边形化会极大地增加轮轨垂向力,但对脱轨系数影响不大;波深限值与机车运行速度及车轮多边形谐波阶数成反比;轨道激励不仅不会掩盖多边形的作用趋势,而且会极大地增加轮轨垂向力。机车在线路上运行时应经常检测车轮不圆度,并及时镟修或者更换车轮,防止出现轮轨垂向力过大或跳轨现象。  相似文献   

11.
根据变轨距货车转向架结构特点建立车辆动力学仿真模型,整车模型包括7个刚体,34个独立自由度和8个非独立自由度。阐述了模型中涉及的非线性环节以及处理方法。计算分析了车辆在不同轨距线路运行时空、重车工况下的直线运行稳定性、运行平稳性和曲线通过性能等各项性能指标。分析结果表明,轨距可变式货车车辆的动力学性能指标满足相关技术标准,轮对绕x轴和z轴的转动惯量和车轮滚动圆横向跨距这3项参数是造成变轨距车辆在准轨位和宽轨位性能差异的主要影响因素。  相似文献   

12.
为确保时速400 km下列车安全平稳运行,车辆部件正常使用,以车辆-轨道耦合动力学为理论基础,将车轮多边形磨耗考虑为轨道不平顺激励,针对单阶主导的车轮多边形形式,分析了车轮多边形阶数、幅值对车辆-轨道动态相互作用的影响规律;基于轮轨垂向力170 kN的限值要求,给出了时速400 km行车条件下车轮多边形阶数、幅值组合的安全限值。结果表明:随着车轮多边形阶数增加,轮轨垂向力逐渐出现高频波动,且阶数越高,波动频次越高,波动幅值越大;车轮多边形幅值越大,对轮轨动态相互作用的影响越明显;相比无多边形的正常车轮工况,轮对垂向振动加速度增幅总体上随车轮多边形阶数增大而增大;车轮多边形对车体和构架影响不大。  相似文献   

13.
高速铁道车辆蛇行脱轨安全性评判方法研究   总被引:1,自引:0,他引:1  
通过建立轮轨三维几何接触模型、整车动力学分析模型和轮轨碰撞模型,分析高速铁道车辆蛇行失稳后的蛇行脱轨过程及其影响因素.高速铁道车辆的蛇行脱轨过程是一个爬轨和跳轨并存的复杂过程,轮对的名义冲角和有效冲角分别对准静态的爬轨和动态的跳轨起着重要影响作用;随着轮对横移速度的增大、轮轨摩擦系数以及车轮垂向载荷的减小,车轮的跳轨高度越大;横向蠕滑力在整个蠕滑力中所占比例以及轮对横向运动能量越大,车辆越容易脱轨.因此高速铁道车辆的蛇行脱轨安全性应根据轮对横移速度限值并考虑车辆的横向运行稳定性进行评判.当高速铁道车辆分别表现为“超临界”和“亚临界”的蛇行失稳极限环分岔形式时,可分别采用转向架横向加速度移动均方根值方法和转向架横向加速度限值对其横向运行稳定性进行评判.  相似文献   

14.
基于刚柔耦合动力学理论建立柔性轮对车辆-轨道刚柔耦合动力学模型,结合现场实测轴箱加速度验证了模型的可靠性。采用谐波叠加法模拟车轮多边形,对比了有无车轮多边形对轮对振动加速度的影响。在此基础上,分析了车轮多边形参数(如多边形阶次、幅值变化)对轮轨系统振动的影响。结果表明,车轮多边形将导致柔性轮对垂向加速度显著增大;与刚性轮对模型相比,柔性轮对及转向架的垂向加速度显著增大,此时多边形激振频率(674 Hz)成为影响其垂向振动的主要因素;轮对垂向加速度随多边形阶次的增加先增大再减小,当车轮多边形阶次为20阶时,轮对垂向加速度达到最大值;钢轨垂向加速度随多边形阶次的增加而增大;轮对垂向加速度、钢轨垂向加速度随多边形幅值的增大而增大。  相似文献   

15.
为提高列车高速直向过岔平稳性,将60N钢轨廓形及新设计的尖轨廓形应用于18号高速道岔转辙器部分,应用车辆-道岔耦合动力学理论,建立模型进行动力学仿真计算,与CHN60高速道岔转辙器动力特性进行对比。仿真计算结果表明:60N高速道岔转辙器部分轮载过渡段起点前移,轮载过渡时间增长;车辆直向经过道岔转辙器时的滚动圆半径差、轮对横移量和钢轨横向接触点外移幅值均减小,轮对蛇形运动幅度减小,行车平稳性得到提高;轮轨最大横向力由6.12 kN降低至4.75 kN,轮轨横向相互作用力减弱;车轮脱轨系数、车体横向加速度略有减小,轮轨垂向力、车轮减载率和车体垂向加速度变化不大,均在安全范围内。  相似文献   

16.
分析悬挂式单轨车辆的转向架结构及组成,建立相应的SIMPACK动力学仿真模型,总结悬挂式单轨车辆通过曲线时的受力分布和力矩平衡公式。应用控制变量法分别研究曲线通过速度、导向轮轮轨间隙和导向轮径向刚度对车辆曲线通过性能的影响。仿真结果表明,导向轮径向载荷随曲线通过速度和导向轮轮轨间隙的增大而增大,随导向轮径向刚度的增大而减小。其中,导向轮轮轨间隙对构架的横向加速度影响较大,对车体横向加速度影响较小。  相似文献   

17.
为了研究车轮多边形对车辆动力学性能的影响,基于多体动力学理论和轮轨滚动接触简化理论,结合CRH2型动车组的动力学参数,建立考虑轮对柔性的刚柔耦合车辆动力学模型。分析车轮多边形阶数和幅值的变化对轮对振动特性、非线性临界速度和轮轨力等车辆动力学性能的影响。结果表明:当多边形激励频率与轮对某阶模态振型的固有频率相近或者相等时,将引发轮对共振,使车辆的动力学性能发生改变;非线性临界速度会随车轮多边形阶数和幅值的增大而降低;脱轨系数随车轮多边形阶数的增加略有增大,随幅值的增大呈线性增大趋势;轮重减载率和轮轨垂向力随阶数的增加波动增大,随幅值的增加显著增大;车轮多边形对运行平稳性的影响甚微,主要是因为一系减振器和二系减振器的减振作用。为保证列车运行安全,根据轮重减载率限值0.6制定出车轮多边形在160~240 km/h速度工况下2~20阶的幅值限值。  相似文献   

18.
《机车电传动》2021,(4):26-33
为了研究车轮扁疤对高速列车轮轨接触蠕滑特性的影响,基于多体动力学理论和滚动接触简化理论,建立考虑轮对柔性的刚柔耦合车辆动力学模型,分析车轮扁疤参数变化对高速列车轮轨力和蠕滑力等特性的影响,并结合轮重减载率和轮轨垂向力指标得到车轮扁疤长度的安全限值。结果表明:考虑轮对柔性能更好地反映轮轨接触状态;在轮轨滚动接触过程中,车轮扁疤过长会导致轮对发生跳轨现象,严重时导致车辆脱轨,应及时根据扁疤长度限值镟修轮对;结合轮重减载率和轮轨垂向力制定车轮扁疤长度安全限值为27 mm,该限值可以更有效地保障高速列车安全运行。  相似文献   

19.
有砟轨道在施工阶段存在大量的钢轨接头会加剧轮轨间冲击和振动,造成钢轨伤损,影响轨道平顺性,不利于工程车辆行车安全,合理的道床刚度能减缓钢轨接头处轮轨间的冲击作用,改善临时轨道结构的受力和变形。基于多体动力学理论,以21 t轴重平车为研究对象,建立车辆-钢轨接头耦合动力学模型,研究钢轨接头区轮轨动力响应,分析道床刚度对轮轨冲击的影响规律。结果表明:钢轨接头区的轮轨冲击较为显著,其轮轨垂向力比非接头区增大约1.4倍。随着道床刚度增加,轮轨垂向力呈非线性增加趋势,钢轨和轨枕的垂向加速度和垂向位移均呈减小趋势,道床刚度为170 kN/mm时,轮重减载率最大值为0.63,接近我国规范的允许限值0.65;道床刚度小于45 kN/mm时,钢轨和轨枕的位移均超出了我国规范允许值(2.5 mm和2.0 mm)。因此,施工阶段应对道砟进行合理的捣固,宜将道床刚度控制在45~170 kN/mm。  相似文献   

20.
资阳机车厂引进美国GM公司径向转向架技术生产的DF8B机车在铁科院机车动力学性能评估试验中,机车安全性、稳定性指标均通过评估标准,平稳性指标中的横向动力学指标较好而垂向振动加速度1项未能达标。为此经过多次计算分析和试验,最终确定了改变一系、二系悬挂参数、降低垂向减振器最大卸荷点和改变制动单元的平衡支板间隙。通过这些措施大幅度降低了机车垂向振动加速度,使机车在动力学补充试验中垂向振动加速度达到良好指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号