共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
自动驾驶汽车需具备预测周围车辆轨迹的能力,以便做出合理的决策规划,提高行驶安全性和乘坐舒适性。运用深度学习方法,设计了一种基于长短时记忆(LSTM)网络的驾驶意图识别及车辆轨迹预测模型,该模型由意图识别模块和轨迹输出模块组成。意图识别模块负责识别驾驶意图,其利用Softmax函数计算出驾驶意图分别为向左换道、直线行驶、向右换道的概率;轨迹输出模块由编码器-解码器结构和混合密度网络(MDN)层组成,其中的编码器将历史轨迹信息编码为上下文向量,解码器结合上下文向量和已识别的驾驶意图信息预测未来轨迹;引入MDN层的目的是利用概率分布来表示车辆未来位置,而非仅仅预测一条确定的轨迹,以提高预测结果的可靠性和模型的鲁棒性。此外,将被预测车辆及其周围车辆组成的整体视为研究对象,使模型能够理解车-车间的交互式行为,响应交通环境的变化,动态地预测车辆位置。使用基于真实路况信息的NGSIM(Next Generation SIMulation)数据集对模型进行训练、验证与测试。研究结果表明:与传统的基于模型的方法相比,基于LSTM网络的轨迹预测方法在预测长时域轨迹上具有明显的优势,考虑交互式信息的意图识别模块具备更高的预判性和准确率,且基于意图识别的轨迹预测能降低预测轨迹与真实轨迹间的均方根误差,显著提高轨迹预测精度。 相似文献
4.
基于机理分析的车辆动力学建模过程通常进行简化及假设,无法准确计算实际车辆在不同道路条件下的动力学变化,进而导致智能汽车轨迹跟踪控制精度低、不稳定等问题。鉴于此,本文中提出了一种基于混合建模技术的非线性建模与控制方法,构建机理分析-数据驱动的车辆动力学串联混合模型,车辆状态与控制数据经机理模型实现计算处理,级联合并后作为数据驱动模块的输入,长短时记忆网络作为主干网络实现时序数据的非线性关联特征提取和最终的模型输出计算。测试结果表明,该模型可以补充计算机理模型中的部分未建模动态并提高模型计算精度,且具有隐式理解不同路面附着条件的能力。其次,使用Euler积分完成对预测模型的离散化并设计模型预测控制轨迹跟踪算法,设计前馈反馈控制算法在实现车辆的纵向控制的同时提供横向控制中预测模型所需的外部输入,最终实现更符合实际行驶环境且更精准的轨迹跟踪控制效果。CarSim/Simulink联合仿真结果表明,该方法实现了不同道路附着系数下控制量精确输出,同步提升了智能汽车轨迹跟踪控制精度和稳定性,具有良好的横纵向协调控制效果。 相似文献
5.
6.
城市交通环境中车辆的驾驶行为随机性较高,且驾驶人驾驶风格迥异。为了解决复杂交通环境下车辆行驶轨迹难以精确预测的问题,在社会生成对抗网络(Social GAN)的基础上,考虑车辆的行驶速度、加速度、航向角等行驶状态参数和形状尺寸,建立车辆间交互影响力场模型,提出一种基于时-空注意力机制的车辆轨迹预测算法(SIA-GAN)。根据受到场景中其他车辆交互影响力的大小赋予其他车辆不同的空间注意力权重因子,重点关注对自车行驶影响较大的车辆信息,并结合时间注意力机制挖掘自身车辆对观测时段内历史轨迹特征向量的时间依赖性,得到车辆预测轨迹。为验证所提算法的有效性,在开源数据集上对算法进行迭代训练,并与LSTM、Social LSTM、Social GAN三种轨迹预测算法进行对比分析。研究结果表明:SIA-GAN不仅在训练时的收敛速度上有较大提升,且与现有其他轨迹预测算法相比在平均位移误差、最终位移误差、平均速度误差、平均航向角误差等评价指标均有大幅下降,预测3.2 s时各项指标平均降低了51.25%、60.1%、37.84%、13.75%;预测4.8 s时各项指标平均降低了52.78%、61.47%、3... 相似文献
7.
针对高速道路场景,对智能车辆前方的目标车辆进行轨迹预测。根据车辆运动轨迹数据具有时序性的特点,并为了增加轨迹特征的表征能力和上下文时空关联性,提出了将车道线特征、目标车辆的特征与历史轨迹数据的特征进行融合,和LSTM-CNN-LSTM融合模型,以提高目标车辆轨迹预测的精度。 相似文献
8.
针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨迹生成算法,在遵守物理约束和隐蔽性前提下,生成更具对抗性的轨迹样本;此外,提出3个新的评价指标全面评估攻击效果;最后,探究了不同的防御策略来减轻对抗攻击影响。实验结果显示,基于扰动阈值的快速攻击算法(attack algorithm based on perturbation threshold for fast attack,PTFA)和基于动态学习率调整的攻击算法(attack algorithm based on dynamic learning rate adjustment, DLRA)在NGSIM数据集上的攻击时间和扰动效果均优于现有算法,更高效发现模型弱点。本研究通过模拟极端情况丰富了轨迹样本,深入评估了模型鲁棒性,为后续优化奠定了基础。 相似文献
9.
10.
11.
针对智能驾驶汽车轨迹跟踪问题,本文验证在五次多项式工况下,模型预测控制的轨迹跟踪效果。本文建立车辆运动学模型,为了便于建立基于模型预测的轨迹跟踪控制器,将所建立的非线性车辆运动学模型线性化,再通过向前欧拉法将系统离散化,得到基于线性时变的预测模型。为了使汽车可以快速且平稳地跟踪目标轨迹,建立包含系统状态量和控制增量的目标函数。最后在Matlab/Simulink中对设计的轨迹跟踪器在五次多项式工况下进行测试,与前轮反馈控制(Stanley)对比,验证此工况下所建立的基于模型预测控制的轨迹跟踪器与Stanley控制相比,可以更准确地跟踪期望轨迹。 相似文献
12.
13.
14.
针对车辆在高速转向和不同路面附着系数下的轨迹跟踪控制问题,基于模型预测控制理论提出了一种考虑路面附着系数的变侧偏角约束MPC控制策略。根据魔术公式轮胎模型分析轮胎的侧偏特性以及不同附着系数对轮胎侧偏角-侧向力线性区的影响,建立轮胎侧偏角约束与不同路面附着系数的函数关系;采用遗传算法(GA)优化BP神经网络模型设计路面附着系数估计器,将估计结果作为与轮胎侧偏角约束相关的变量传递到MPC控制器中;最后在MPC控制器中建立系统控制量约束、控制增量约束,以及考虑路面附着系数的变侧偏角约束,将不同路面附着系数工况下的轨迹跟踪问题转化为多约束条件下最优值求解问题,实现轨迹跟踪和车辆稳定性控制。仿真和试验结果表明,考虑路面附着系数变化的MPC控制方法相对传统MPC控制方法在各种工况下具有更高的轨迹跟踪精度和更好的车辆稳定性,GA-BP神经网络路面系数估计方法具有很高的估计精度。 相似文献
15.
16.
针对自动驾驶车辆行驶轨迹的横向跟踪问题,设计了线性时变模型预测控制器。以车辆3自由度动力学模型为预测模型,以横向位置偏差最小为主要控制目标,考虑车辆状态约束、控制约束和轮胎侧偏角约束,优化了自动驾驶车辆轨迹跟踪安全性、转向稳定性和操作可行性等多目标性能。搭建MATLAB/Simulink和CarSim联合仿真模型,并将所设计的控制器控制效果与熟练驾驶员操纵结果、线性二次规划控制器控制效果进行了比较分析,结果表明,所设计的控制器可以有效解决多约束条件下自动驾驶车辆行驶轨迹的横向跟踪问题,且在安全性、转向稳定性和操作可行性方面具有显著的优势。 相似文献
18.
针对智能车辆在轨迹跟踪过程中的横向控制问题,提出一种基于强化学习中深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)的智能车辆轨迹跟踪控制方法。首先,将智能车辆的跟踪控制描述为一个基于马尔可夫决策过程(MDP)的强化学习过程,强化学习的主体是由Actor神经网络和Critic神经网络构成的Actor-Critic框架;强化学习的环境包括车辆模型、跟踪模型、道路模型和回报函数。其次,所提出方法的学习主体以DDPG方法更新,其中采用回忆缓冲区解决样本相关性的问题,复制结构相同的神经网络解决更新发散问题。最后,将所提出的方法在不同场景中进行训练验证,并与深度Q学习方法(Deep Q-Learning,DQN)和模型预测控制(Model Predictive Control,MPC)方法进行比较。研究结果表明:基于DDPG的强化学习方法所用学习时间短,轨迹跟踪控制过程中横向偏差和角偏差小,且能满足不同车速下的跟踪要求;采用DDPG和DQN强化学习方法在不同场景下均能达到训练片段的最大累计回报;在2种仿真场景中,基于DDPG的学习总时长分别为DQN的9.53%和44.19%,单个片段的学习时长仅为DQN的20.28%和22.09%;以DDPG、DQN和MPC控制方法进行控制时,在场景1中,基于DDPG方法的最大横向偏差分别为DQN和MPC的87.5%和50%,仿真时间分别为DQN和MPC的12.88%和53.45%;在场景2中,基于DDPG方法的最大横向偏差分别为DQN和MPC的75%和21.34%,仿真时间分别为DQN和MPC的20.64%和58.60%。 相似文献
19.
20.
高精度车辆轨迹数据对于高速公路交通管理和智慧服务具有非常重要的研究及应用价值,然而现有的车辆轨迹感知技术难以获得全域全时车辆轨迹数据。为此,提出一种基于毫米波雷达的全域车辆轨迹跟踪技术方法,该方法包括:雷达原始数据获取及适配、轨迹数据清洗及降噪、道路线形感知及还原、车辆轨迹匹配及拼接。其中,雷达原始数据获取及适配通过构建雷达帧数据适配表将雷达数据格式标准化,并通过构建的轨迹可信度评价指标K,剔除镜像车辆轨迹数据,进而基于历史行车轨迹的统计学特征,采用聚类方法还原道路线形,最终通过雷达群组间车辆轨迹特征分析及匹配拼接,实现设备内部及跨设备对车辆轨迹的持续跟踪。利用载波相位差分技术(Real-time Kinematic, RTK)和基于无人机航拍视频定位技术分别对单车及多车轨迹跟踪精度进行检验。研究结果表明:在单目标跟踪状态下,系统的纬度偏差均值为-0.284 m,经度偏差均值为-0.352 m,纬度误差均值为0.712 m,经度误差均值为0.539 m;在多目标跟踪状态下,系统丢车率约为8%,轨迹定位与真实位置偏差均值为0.990 m,具备良好的轨迹跟踪精度。该方法为未来从更加宏观的范围内研究个体驾驶行为风险转移分析、微观水平的驾驶风险的时空演化提供了数据支撑。 相似文献