首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

Tractor ride vibration levels have been measured when operating with and without a two wheel (2W) unbalanced and a four wheel (4W) balanced trailer. Measurements were made in the vertical, pitch, longitudinal and roll directions with the trailers unladen and laden over four typical farm surfaces

The results showed that tractor ride vibration levels were usually increased in all directions-particularly the longitudinal direction- when operating with the laden trailers. But for the unladen trailers, they were increased only in the longitudinal direction. Predominant tractor frequencies tended to be lower with the trailers attached, and coupling between the tractor longitudinal, vertical, roll and pitch co-ordinates was generally increased

Comparisons of the results with the trends predicted by a simplified theoretical model of a tractor and 2W trailer, suggested that the model should be extended to include, (a) the roll direction, (b) more realistic ground inputs, and (c) a 4W trailer  相似文献   

2.
A six degree of freedom model of an agricultural tractor and trailer combination has been developed. Results from eigenvalue and frequency response calculations indicated that tractor operator vibration levels will be higher when operating with a trailer than for the tractor alone, due mainly to increased tractor pitch motion.

Although minor improvements could be made to present tractor and trailer combinations by moving the hitch forward of the tractor rear axle or providing some damping at a sprung hitch, the scope for a significant improvement in ride lies in changing the configuration. If higher speed specialised transport vehicles prove economical for agriculture, there are some advantages in ride vibration to be gained by changing the layout of the tractor and trailer combination to resemble an off-road version of a commercial articulated lorry.  相似文献   

3.
SUMMARY

A six degree of freedom model of an agricultural tractor and trailer combination has been developed. Results from eigenvalue and frequency response calculations indicated that tractor operator vibration levels will be higher when operating with a trailer than for the tractor alone, due mainly to increased tractor pitch motion.

Although minor improvements could be made to present tractor and trailer combinations by moving the hitch forward of the tractor rear axle or providing some damping at a sprung hitch, the scope for a significant improvement in ride lies in changing the configuration. If higher speed specialised transport vehicles prove economical for agriculture, there are some advantages in ride vibration to be gained by changing the layout of the tractor and trailer combination to resemble an off-road version of a commercial articulated lorry.  相似文献   

4.
The towed trailer method for skid resistance measurements is a practical one for characterizing the friction characteristics of highway pavements, and has been standardized by the ASTM 11). Numerous papers have been published about the improvement of equipment and field-testing techniques but little has been done toward a theoretical explanation.

This paper presents a mathematical model of the trailer which includes roll, pitch, and vertical motion. The skid resistance calculated by using this model gives an excellent check on the standard ASTM skid number formula. The response time and damping effect after locking one test wheel can be clearly seen in this model. Possible effects of the dimensions of trailer, stiffness of suspension system, tire pressure, etc. to skid resistance can also be examined.  相似文献   

5.
The longitudinal connection between a chassis and a wheel in a conventional vehicle suspension system is commonly very stiff than the vertical connection. Such a mechanism can efficiently isolate vibrations and absorb shocks in the vertical direction but cannot sufficiently attenuate the impact in the longitudinal direction. In order to overcome such a limitation, a planar suspension system (PSS) with spring–damper struts in both the longitudinal and vertical directions is proposed so that the vibration along any direction in the wheel rotation plane can be isolated. In this paper, the dynamic responses of a vehicle with PSS due to a single bump and random road unevenness are investigated. The ride quality of the vehicle with PSS is evaluated in accordance with ISO 2631. A comparison with that of a similar conventional vehicle is conducted to demonstrate the promising potentials of the PSS in improving the vehicle ride quality.  相似文献   

6.
The potential performance improvement using preview control for active vehicle suspension was first recognized in the late nineteen sixties. All work done since that time has been based on optimal control theory using simple vehicle models.

In this article, the performance of quarter vehicle preview controllers when applied to a real off-road vehicle is simulated using both two degree of freedom quarter and ten degree of freedom full vehicle models. The results, which are compared with non-preview active and conventional passive suspensions, confirm that preview control reduces vertical acceleration of the body centre of gravity, which results in improved ride quality. Further, reductions in pitch and roll motion result from smaller vertical displacements of the vehicle quarters. Coupling between quarters, through the vehicle body, appears to have a smoothing effect on the control.

As an alternative to optimal control theory based controllers, a simple ad hoc preview controller based on isolating the vehicle body from dynamic loads transmitted through the suspension is proposed. Simulation results show that such a controller outperforms the optimal control theory based controllers over small discrete disturbances but responds poorly to disturbances encountered from other than steady state.  相似文献   

7.
Measurement of two track road inputs and theoretical application of the results

The calculation of vehicle response to road-surface irregularity inputs requires the spectral densities of the left and right longitudinal track and their statistical dependence

This paper presents some resluts of parallel profile measurements, three typical german roads have been chosen

Random vibration of two vehicle types are digital-simulated. The dynamic tire load shows that independent suspension systems are more advantageous than beam axles, because by wheel tramp this type increases the dynamic tire load.  相似文献   

8.
An investigation was carried out to determine the origins of vibration of an automobile rear axle with the object of establishing the significance of road-surface-induced vibratory inputs. This was achieved by measuring the vibratory acceleration of the rear axle of an automobile as it traverses straight sections of typically paved roads, at uniform speeds, then comparing the results with those obtained by laboratory simulation.

The investigation revealed significant levels of vertical, longitudinal and, to a much lesser extent, lateral vibrations. The main source of vertical vibrations is shown to be induced mainly by vertical displacements imposed by the road-surface irregularities on the vehicle tyres. The longitudinal and lateral components are shown to be induced mainly by the engine and the drive-line (including tyre/wheel assemblies) as well as due to coupling between the vertical, longitudinal and lateral motions of the rear axle imposed by the geometry of the rear axle suspension.  相似文献   

9.
Simulation of Steering and Braking Behaviour of Tractor-Semitrailer Vehicles in Extreme Situations

This paper deals with the simulation of the behaviour of tractor-semitrailer vehicles at braking on wet, slippery road surface. The nonlinear model used for the computation enables to simulate extreme situations at wheel locking and swerving

The instabilities during braking such as jackknifing and trailer swing as well as non steerability are investigated. Straightline braking shows the influence of cornering on the behaviour during braking in a turn.  相似文献   

10.
Railway Vehicle Active Suspensions   总被引:3,自引:0,他引:3  
This paper reviews the state-of-the-art of active suspensions for use on railway vehicles. The primary focus of the paper is on ride quality control, both vertical and lateral, and on lateral stability control.

The section on theoretical considerations summarizes the results of a one-degree of freedom optimization and then investigates analytically the use of active suspensions for lateral ride and stability augmentation. It is shown that separate control structures using different measurements and actuator actions are very effective in controlling both ride quality and stability.

A section on a survey ofcurrent activities reviews published research on active railway suspension work around the world.

Finally a concluding section indicates future trends in active suspension applications.  相似文献   

11.
A mathematical model for the representation of longitudinal oscillations which can occur in car/trailer systems in braking, when the trailer brakes are applied through compression of the towing hitch, is described. The model is used to show how the trailer braking system parameters affect the steady deceleration performance of the vehicle combination, and the stability, in the linear system sense, of the steady motions. The sensitivity of the stability to other system design parameters is also examined.

Digital simulation of the motions occurring in response to a step input of car braking torque is reported, with the results confirming the predictions of the linear stability analysis, and also showing the influence of backlash in the trailer brake actuating mechanism.

The system is shown to be capable of self-excitation in a “shunting” mode, in which the car and trailer motions are in antiphase, with the stability/damping property critically dependent on drawbar damping, and only weakly dependent on other system parameters. The characteristic frequency of the “shunting” mode oscillations is shown to be controllable via the stiffness of the trailer brake linkage, but this frequency is closely related to the steady drawbar deflection which occurs in uniform deceleration.

The model behaviour described provides a basis for the design of relevant systems whose longitudinal dynamic characteristics will be satisfactory.  相似文献   

12.
Tractor behaviour on sloping ground following a control loss due to rear wheel locking is examined. A mathematical model to predict the tractor trajectory is presented and the results obtained from this model are compared with those obtained from experiments with a remotely controlled tractor.

Reasonable agreement is reached between measured and predicted results - the discrepancies arise from limited tyre data or local random variations in slope, ground roughness or tyre/ground frictional values.

Within these limitations, the model is used to examine possible driver strategies following a control loss. Applying and maintaining full lock for this particular type of accident appears to improve safety; it certainly tends to avoid the worst situation in which the tractor accelerates backwards down the slope and reaches dangerously high speeds although inevitably it increases the likelihood of a low speed overturn.  相似文献   

13.
The ride dynamic characteristics of a novel torsio-elastic suspension for off-road vehicle applications are investigated through field measurements and simulations. A prototype suspension was realised and integrated within the rear axle of a forestry skidder for field evaluations. Field measurements were performed on forestry terrains at a constant forward speed of 5 km/h under the loaded and unloaded conditions, and the ride responses were acquired in terms of accelerations along the vertical, lateral, roll, longitudinal and pitch axes. The measurements were also performed on a conventional skidder to investigate the relative ride performance potentials of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in magnitudes of transmitted vibration to the operator seat. Compared with the unsuspended vehicle, the prototype suspended vehicle resulted in nearly 35%, 43% and 57% reductions in the frequency-weighted rms accelerations along the x-, y- and z-axis, respectively. A 13-degree-of-freedom ride dynamic model of the vehicle with rear-axle torsio-elastic suspension was subsequently derived and validated in order to study the sensitivity of the ride responses to suspension parameters. Optimal suspension parameters were identified using the Pareto technique based on the genetic algorithm to obtain minimal un-weighted and frequency-weighted rms acceleration responses. The optimal solutions resulted in further reduction in the pitch acceleration in the order of 20%, while the reductions in roll and vertical accelerations ranged from 3.5 to 6%.  相似文献   

14.
The very-high-speed tests carried out by SNCF between the end of 1989 and May 1990, are an extension of the investigations which have been made for many years in order to acquire the control of high speeds. The high-speed run which ended the tests is well known [1], [2],[3].

In order to place the final test campaign in its context, we can recall progression made during the last decade.

In February 1981, the maximal speed of 380 km/h was reached with a TGV-PSE1 train set, having the same configuration as the series, but only seven trailers instead of eight.

During the following years, until 1986, the pneumatic suspension and the new Y 231 carrying bogies designed for TGV-ATL train sets were developed, with numerous test runnings in the speed range from 300 to 350 km/h, in order to obtain certitudes as regards the stability of the bogies and the appropriate choice of anti-hunting devices for commercial speeds of 270 km/h (LGV-PSE) or 300 km/h (LGV-ATL).

These tests allowed the definition of the TGV equipment design principles, which are applied today as regards the critical speed of the bogies.

Between 1985 and 1988, the development of the prototype train set equiped with self-controlled synchronous motors (March 1988) led once more to numerous runnings at high speed, in December 1988 with the so-called “operation TGV 88”. During this operation, the speed range from 350 to 400 km/h was investigated (maximal speed 408,4 km/h on December 12th 1988).

Apart from the capability of the synchronous traction equipment to develop the required power and the performance consisting in the realization of such tests on a line kept in operation (LGV-PSE), the teachings gathered together during this test campaign were decisive for the pursuit of the operation.

On this occasion, we discovered that:

-with the single-phase GPU pantograph mounted on this train set, we could get the current collection under control without difficulties inside the studied speed range,

-the bogies presented a stability margin distinctly higher than that which had been estimated, according to the results of former experiences.

Consequently, the test campaign of the TGV 117 could be engaged with a great confidence in the capabilities of the TGV equipment to achieve markedly higher speeds with full safety. The preparation of this test campaign had begun in 1986 and was conducted in a parallel direction to the above mentioned experimentation.

The campaign was preceded by a preliminary test campaign with the train set TGV-ATL n° 308, with a reduced train composition, including eight trailers. The goal was the validation, until 390 km/ h, of the test field consisting in the TGV-ATL Aquitaine branch, as well for the track as for the overhead contact line, the achievement of which was just ended.

The operation TGV 117 was then carried out in two phases:

-in December 1989 the train set TGV-ATL 325 with a reduced train composition consisting in four trailers between two motor cars reached the maximal speed of 482,4 km/h on December 5th,

-in May 1990 the same train set, but with only three trailers, improved the performance unto the final record: the speed of 515,3 km/h was reached on May 18th.  相似文献   

15.
The critical or hunting speed of solid axle rail vehicles is known to be a strong function of primary suspension stiffness, wheel/rail profile geometry (conicity and gravitational stiffness), wheel/rail friction forces (creep coefficients), bogie/carbody inertia properties, and secondary suspension design. This paper deals with the problem of maximizing the critical speed through design of the primary and secondary suspension but with control only over the range of wheel/rail geometry and friction characteristics. For example, the conicity may varie from .05 to .3 and the linear creep coefficients from 25% to 100% of the predicted Kalker values.

It is shown that the maximum critical speed is greatly limited by the wheel/rail geometry and friction variations. It is also shown that, when lateral curving and ride quality are considered, the best design approach is to select an intermediate primary longitudinal stiffness, to limit the lowest value of conicity (e.g. to .1 or .2) by wheel profile redesign, increasing the secondary yaw damping value (yaw relaxation) and optimizing the primary and secondary lateral stiffness.  相似文献   

16.
This paper describes mathematical and computer models for ride quality and dynamics of rail vehicles developed for running on personal computers. The purpose of the computer simulations is for prediction of ride quality in order to study the dynamic stability of the system and the effect of track quality and irregularities on ride quality.

In deriving the equations of motion for dynamic stability, the tangential forces acting on the contact areas between the wheels and rails are of fundamental importance in railway vehicles dynamics and are included in the analysis [1]. These forces are due to the creep phenomenon between the wheel and the rail on which it is rolling. Track irregularities are defined in terms of four components consisting of gauge, cross level, alignment and vertical surface profile [2]. Relation of allowable track irregularities versus speed is given by the FRA Track Safety Standards. Analytical representation of track irregularities should include both PSD (Power Spectral Density) for CWR (Continuous Welded Rail) as well as discrete inputs from track joints.

In this paper, the rail vehicle suspension analysis and dynamics mathematical and computer models are described. The computer models are written in Fortran 77 and designed to run on personal computer. The paper also discusses programming considerations that must be taken into account when programming for microcomputers under DOS (IBM's Disk Operating System) and MS or RM Fortran Compilers. Most of the considerations are however, valid in general with respect to engineering software development and programming for microcomputers.

Computer graphics is a powerful tool for visualization of the resulting solutions such as the display of the characteristic roots for the eigenvalues solution on a root locus plot and representation of acceleration levels versus the “Reduced Comfort Boundary” limits defined by the International Standards Organization” (ISO 2631-1985). In this paper some examples of these resulting outputs are presented and their significance discussed.  相似文献   

17.
SUMMARY

The towed trailer method for skid resistance measurements is a practical one for characterizing the friction characteristics of highway pavements, and has been standardized by the ASTM 11). Numerous papers have been published about the improvement of equipment and field-testing techniques but little has been done toward a theoretical explanation.

This paper presents a mathematical model of the trailer which includes roll, pitch, and vertical motion. The skid resistance calculated by using this model gives an excellent check on the standard ASTM skid number formula. The response time and damping effect after locking one test wheel can be clearly seen in this model. Possible effects of the dimensions of trailer, stiffness of suspension system, tire pressure, etc. to skid resistance can also be examined.  相似文献   

18.
A high-speed optimal trailer steering controller for a tractor–semitrailer is discussed. A linear model of a tractor–semitrailer with steered trailer axles is described, and an optimal trailer steering controller is introduced. A path-following controller is derived to minimise the path-tracking error in steady-state manoeuvres using active trailer steering. A roll stability controller is introduced by adding the lateral acceleration of trailer centre of gravity as another objective in the steering controller, so as to improve roll stability in transient manoeuvres. A strategy to switch between these two control modes is demonstrated. Simulation results show that the steering controller can ensure good path tracking of articulated vehicles in steady-state manoeuvres and improve roll stability significantly in transient manoeuvres, while maintaining the path-tracking deviation within an acceptable range. Tests with an experimental tractor–semitrailer equipped with a high-bandwidth active steering system validate the controller design and simulation results. The roll stability controller reduces the measured rearward amplification by 27%.  相似文献   

19.
Researchers have proposed various active suspension concepts to optimize the tradeoff between ride and handling in passenger vehicles. A few investigators suggested inclusion of the passenger jerk, the derivative of the passenger acceleration, as a measure of ride quality in the performance index. Minimization of a performance index then optimizes both the acceleration and jerk as well as other outputs representing handling quality and design constraints. This approach is called jerk optimal control.

This paper compares two different vehicle models of increasing complexity (the one and two DOF quarter car) using jerk optimal control. Different aspects of suspension performance are investigated, including the structure of the system transfer functions, the structure of the force control laws, and the tradeoffs between the various root mean square (rms) outputs defining system ride and handling performance. Tables compare the numerical results of the two models, allowing predictions of actual vehicle performance.

The results of the two models show the same basic trend for the tradeoff between ride and handling quality: at a constant level of rms passenger acceleration the rms passenger jerk can be reduced significantly, but only at a cost of increased rms tire deflections. In physical terms, a softer ride results in degraded handling performance. For a chosen level of ride improvement, the more realistic two DOF quarter car model predicts more severe degradation of handling. The latter nevertheless predicts a substantial increase in vehicle ride quality is possible through a 55% reduction in jerk. It is expected that actual suspensions could also produce significant increases in ride quality through jerk reduction. Jerk optimal suspensions could find use both in higher end passenger vehicles and in transports for vibration sensitive cargo.  相似文献   

20.
This study mainly focuses on the mechanism of wheel tread spalling through wheelset longitudinal vibration that has been often neglected. Analysis of two actual cases of the wheel tread spalling problem leads to the conclusion that the wheel tread spalling is closely related to the wheelset longitudinal vibration in some locomotives, and many of these problems can be reasonably explained if the wheelset longitudinal vibration is considered. For better understanding of some abnormal wheel spalling problems, the formations of the wheelset longitudinal vibration and the wheel/rail contact parameters were analysed in the initial wheel tread spalling. With the preliminary analytical results, the wheelset longitudinal dynamic behaviour, the characteristics of wheel/rail contact and the mechanics in the condition of the wheelset longitudinal vibration were further studied quantitatively. The results showed that the wheelset longitudinal vibration changed not only the limit of these parameters and the position of principal stress, but also the direction of the principal stress on the surface of wheel/rail contact patch. It is likely that the significant stress changes provoke too much stress on the surface of wheel/rail contact patch, cause fatigue in wheel/rail contact patch and eventually lead to wheel tread spalling. The results of these studies suggest that the suppression of the wheelset longitudinal vibration extends wheel/rail life and the addition of a vertical damper with an ahead angle provides a possible solution to the wheel spalling problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号