首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
为了使机电控制无级变速器(CVT)能够可靠地传递转矩,快速地调节速比,结合某车型的结构性能参数,对机电控制CVT电控电动执行机构的设计方法进行研究。首先,对机电控制CVT电控电动执行机构的结构和工作原理进行分析,说明电控电动执行机构对CVT速比和从动带轮夹紧力的调节方法,从运动学和动力学的角度研究从金属带式无级变速器的传动机理,获得速比与主动带轮可动盘位移的关系以及保证主、从动带轮可靠传递转矩所需要的夹紧力;然后,根据整车的结构性能参数,明确汽车对机电控制CVT的功能需求和性能要求,以电控电动执行机构中直流电动机的负载转矩最小为目标,设计确定各碟形弹簧的参数和组合形式,在此基础上确定电控电动执行机构中电动机械传动系统的结构性能参数;最后,为验证所设计电控电动执行机构参数的正确性,利用所建立的机电控制CVT传动系统模型在ECE工况下对电控电动执行机构的性能进行仿真分析。结果表明:相对传统CVT液压执行机构,在ECE工况下机电控制CVT电控电动执行机构消耗的能量减少52.2%,同时设计的电控电动执行机构在ECE工况下能够实现实际夹紧力和速比对目标值的良好跟随。  相似文献   

2.
金属带式CVT控制方法研究   总被引:4,自引:0,他引:4  
速比控制、起步离合器控制、带轮夹紧力控制是金属带式CVT的3个主要控制因素,通过对CVT控制方法的研究,探寻提高汽车的动力性、换档平顺性和燃油经济性的途径。  相似文献   

3.
金属带式无级变速器(VDT—CVT)是汽车理想的变速器,是各国研究者和汽车公司研究的重点。本文对金属带式无级变速器的工作原理进行了介绍,并阐述了其控制理论,分别分析了在不同工况下的控制方法。  相似文献   

4.
CVT混合动力汽车再生制动控制策略与仿真分析   总被引:8,自引:0,他引:8  
分析了混合动力汽车制动过程中发动机反拖制动和CVT速比控制对车辆再生制动性能的影响,提出了低制动强度下仅由电机再生制动、高制动强度下电机与制动器共同制动和紧急制动时发动机参与制动的再生制动策略。对典型工况进行了再生制动仿真,仿真结果表明,CVT速比控制可使电机运行在高效区,从而获得了比传统手动变速混合动力汽车更好的制动能量回收效果。  相似文献   

5.
在传统控制策略的基础上,提出以冲击度、发动机转速和离合器油液温度3个参数来优化接合压力变化率的的CVT离合器控制策略.4种起步工况下的整车试验结果显示,采用所提出的控制策略,缩短了离合器接合时间(平均缩短了0.4s),提高了汽车起步平稳性(冲击度平均降低了1m/s3).  相似文献   

6.
采用CVT的四轮驱动混合动力车传动系统控制策略的研究   总被引:1,自引:0,他引:1  
为了改善SUV汽车的燃油经济性和动力性,提出了一种采用CVT的四轮驱动复合式混合动力汽车的结构;根据该混合动力汽车发动机试验数据,对其运行模式与模式切换离合器控制策略进行了系统分析;同时对混合动力CVT的夹紧力与速比控制进行了深入研究,并以整车燃油经济性为控制目标,提出了复合式混合动力车不同工况下的速比和夹紧力控制策略;最后通过台架试验验证了传动系统控制策略的有效性.  相似文献   

7.
汽车起步颤振是指汽车在一定的挡位、节气门开度和道路负载下起步时,出现的传动系剧烈的扭转振动现象。本文考虑了挡位、节气门开度和路面坡度等因素,选取一挡小油门起步工况进行了实车道路实验,对测得的某位置振动加速度信号进行了时域和频域上的分析,确定该工况下引起该轿车起步颤振现象的特征频率。  相似文献   

8.
基于双层隐式马尔科夫模型的驾驶意图辨识   总被引:1,自引:0,他引:1  
构建了一种双层隐式马尔科夫模型结构,用于实时辨识驾驶员复合工况下的驾驶意图,并在驾驶模拟器上对坡道起步、紧急避障和弯道制动等复合工况进行了验证。结果表明,该模型可准确、高效地辨识各个单一和复合工况下的驾驶意图,为线控汽车的集成控制奠定基础,提高线控汽车的安全性和减轻驾驶员负担。  相似文献   

9.
CVT液压系统功率的匹配分析与仿真   总被引:2,自引:0,他引:2  
以CVT液压系统为研究对象,建立了压力、流量和功率的仿真模型,并对车辆起步、加速、制动等典型工况和ECE、EUDC循环工况进行了仿真,计算表明采用定量泵供油的CVT液压系统存在较大的功率损失,提出了提高电动液压泵和双联液压泵供油系统效率的新方案,为系统的节能控制奠定了基础。  相似文献   

10.
无级变速器CVT消除了挡位概念,其速比在一定范围内连续可调。配备CVT的混合动力汽车能够实现动力源转矩和传动系统的优化匹配。针对此问题,提出了基于系统效率最优的CVT中度混合动力轿车动力源转矩优化分配方法:。该方法:综合考虑了各个关键部件的效率,以混合动力系统的总体效率为优化目标,以车速、车辆加速度、电池SOC为状态变量,优化分配了驱动工况下各动力源输出转矩,为整车能量管理策略的制定奠定了基础。  相似文献   

11.
针对CVT速比控制的特殊要求,在综合考虑常规PID控制经验及控制效果的基础上,设计了分段参数自调整PID速比跟踪控制器。建立了装备CVT系统的整车动力学仿真模型,并利用Matlab/Simuink工具进行了起步、加速和坡道行驶等典型工况的仿真研究。结果表明,该控制器具有较强的鲁棒性和解耦能力,以及良好的动态响应能力和较高的稳态控制精度。  相似文献   

12.
金属带式无级变速器(CVT,Continuously Variable Transmission)中的速变器(Variator)是靠摩擦传递扭矩,所以关于速变器的滑移研究实质上是十分重要的。从CVT速变器滑移率定义入手,建立速变器状态空间数学模型,详细研究滑移率与牵引系数之间的关系,提出速变器滑移控制策略,进一步采用MATLAB/Simulink/SimDriveline建立带有金属带式无级变速器整车仿真模型,通过仿真结果分析得出:在相同滑移率工况下,采用滑移控制比采用传统的夹紧力控制能够使用更小的安全系数,有效地降低了CVT液压控制系统的压力,提高了CVT自身效率,同时也提高了CVT传递扭矩的能力。  相似文献   

13.
针对装备CVT的混合动力汽车,提出了一种以混合动力系统效率最高为优化目标,以车速、加速踏板行程和电池SOC为状态变量,以电机转矩和CVT速比为控制变量的中度混合动力汽车能量优化策略。该策略综合考虑了驾驶员的实际操作和驱动需求以及各个关键部件的效率,确定了驱动工况各工作模式下的最优电机转矩和最优CVT速比,保证了混合动力系统的效率最高。采用自行搭建的前向仿真模型对所提出的能量优化策略进行了验证,结果表明:在NEDC循环工况下该车等效100km油耗比原型车降低了26.4%。  相似文献   

14.
沈帅 《汽车与配件》2009,(40):36-37
起步控制一直是困扰自动离合器的难题。湿式多片离合器结构简单,布置方便,因而控制容易、成本低,近年来在CVT上得到了广泛的应用。  相似文献   

15.
介绍了EQ6480客车CVT(Continuously Variable Transmission)电子液压控制系统的设计,CVT传动器与发动机的动态匹配与控制算法。针对汽车运行的典型工况,在专用的传动器试验台上进行了台架试验。  相似文献   

16.
越野汽车AMT起步与换挡过程试验研究   总被引:4,自引:0,他引:4  
根据越野汽车特点及行驶工况,建立了装备电控机械自动变速器的越野汽车起步与换挡控制系统数学模型,对其工作过程进行了分析。在空载与满载工况,按照不同油门和不同离合器结合速度进行了试验。为了满足平顺性,建立了以冲击度为约束条件的起步与换挡控制规律,并对试验结果进行了分析。试验结果表明,以动态三参数对换挡过程进行控制可改善起步及换挡品质,满足平顺性要求。  相似文献   

17.
为了降低整车油耗及排放, 48 V轻度混合动力启停技术是一种低成本且易于实现的解决方案。以无级自动变速器(CVT)为本体对象,开发了基于电子油泵的启停技术,完成了电子油泵参数设计和布置,并根据启停功能需求开发启停协同控制的控制策略,该控制策略既能满足基本启停需求,同时也没有降低拥堵工况下的车辆起步驾驶性能。对装备该启停系统的CVT进行了NEDC+ECE循环测试,未装备启停系统的车辆油耗测试为6.4 L/100 km,装备启停系统的车辆油耗为6.13 L/100 km,油耗下降了4.2%。同时排放测试显示,在ECE工况下排放减少了12%。试验结果表明,启停系统使油耗和排放明显降低,达到了预期的效果。  相似文献   

18.
无级变速器(CVT)正在逐渐成为改善发动机燃油经济性的1项重要技术,同时也可有效降低汽车的CO2排放。介绍了丰田汽车公司与日本爱信精机株式会社联合开发的新款CVT及相关技术。该款CVT采用传统的钢带结构,且增设了独特的起动齿轮机构,并围绕降低燃油耗、提高驾驶性能、实现轻量化等目标,引进了诸多新技术,从而使新款CVT具有换档平顺,速比范围宽广的特点。由此,发动机可在任何车速下均以最高效率运转,同时也使车辆的起步、加速及驾驶性能得到改善。  相似文献   

19.
田永梁 《汽车杂志》2012,(7):I0005-I0005,177
全新一代的XTRONIC CVT,最大的改进是加入了ECO节油模式,通过加入了ECO MODE智能节油模块,来控制CVT的变速反应.在起步和行驶时的稳定性更好,从而降低油耗。  相似文献   

20.
1利用HDS对CVT系统进行故障诊断的基本思路利用HDS的数据分析功能对CVT系统进行故障诊断的基本思路是:先找出CVT在各工况下异常的参数(在必要时对此参数采用波形分析),然后分析造成此参数异常的原因(按照机械系统、液压系统、电子控制系统等的分类方法分别分析),然后制定出检查方案。可以看出,在故障处理中重要的一步是找出异常的参数,在CVT系统的数据列表中包括大量的参数,有些参数只采用数值分析存在一些局限,还需  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号