首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
深入分析了质心侧偏角、横摆角速度和路面附着系数与汽车稳定性之间的关系,根据汽车线性2自由度模型获得了汽车期望质心侧偏角和期望横摆角速度的稳定值,并提出了基于递归最小二乘法的路面附着系数识别算法。在此基础上,基于滑模控制理论采用指数趋近律分别设计了横摆角速度、质心侧偏角和两者联合为控制变量的汽车稳定滑模控制器,获得附加横摆力矩。Car Sim/Simulink仿真验证了所提出的路面附着系数估算算法的正确性和对应路面附着系数下汽车稳定控制策略的有效性。同时,基于Car Sim/Lab VIEW RT的硬件在环仿真试验,验证了所提出控制策略的可行性。  相似文献   

2.
为了能够实时准确的获得当前车轮的轮胎力及路面附着系数以提高汽车主动安全性能,提出一种轮边驱动电动汽车状态估计与路面附着系数估计相结合的估计方法。根据车载传感器及七自由度非线性车辆动力学模型,采用扩展卡尔曼滤波算法(EKF)进行车辆状态及轮胎力的估计。结合EKF估算结果和轮胎模型,采用递归最小二乘法(RLS)实时估计不同路面的附着系数。仿真结果表明:该方法可以在较为复杂工况下估计出不同的路面附着系数,估计精度较高,实时性较好。  相似文献   

3.
本文中针对一种双转鼓惯性试验台,基于CAN/PCI总线建立机电一体化分布式测控系统,用于车辆安全性、动力性试验检测。基于所设计惯性试验台提出通过改变车轮与双转鼓间安置角等效不同路面峰值附着系数的算法,基于制动过程单轮动力学分析,建立单轮-试验台系统动力学模型,根据动力学模型获得可变安置角与路面峰值附着系数等效路面附着机理,基于Matlab/Simulink建立单轮-试验台系统仿真模型,验证了等效路面附着系数算法。通过所建单轮-试验台系统进行了试验,在小滑动区实时获取车轮所受纵向力及滑动率,基于Slip-slope理论实时估算等效峰值附着系数。结果表明,双转鼓惯性试验台等效路面附着机理正确,等效路面附着系数算法准确可行。  相似文献   

4.
基于四轮轮边驱动电动车的路面附着系数估算方法   总被引:1,自引:0,他引:1  
余卓平  左建令  陈慧 《汽车工程》2007,29(2):141-145
路面附着系数是影响车辆行驶安全性的重要因素,利用轮边驱动电动汽车驱动力矩可以对路面利用附着系数进行观测。当观测到μ-λ曲线接近于峰值点时,将该时刻的轮胎利用附着系数作为路面峰值附着系数,并根据识别的路面峰值附着系数进行驱动防滑控制。该方法能够有效防止轮胎滑转,提高车辆行驶稳定性。  相似文献   

5.
针对车辆主动安全控制中路面附着系数这一关键信息,提出一种指数加权衰减记忆无迹卡尔曼滤波(FMUKF)估计算法。该算法在传统无迹卡尔曼滤波(UKF)的基础上,利用衰减记忆滤波来解决由于模型不准确造成的滤波误差过大甚至发散等问题。利用Car Sim和MATLAB/Simulink对算法进行了联合仿真和实车道路试验,并与传统UKF算法的估计结果进行对比分析。结果表明,该算法增强了滤波的稳定性、提高了算法的估计精度,且具有一定的自适应性。  相似文献   

6.
在复杂和极限工况下,路面附着系数是进行轮胎受力分析和车辆动力学控制的重要状态参数。相对于模型估计的方法,智能轮胎技术能够将轮胎与路面的交互信息反馈给车辆控制系统。本文提出了一种将智能轮胎系统和机器学习相结合的车辆路面附着系数获取方法。首先,考虑行驶工况环境进行传感器选型,开发基于MEMS三轴加速度传感器的智能轮胎硬件采集系统,并采用简化硬件结构的无线传输模式。其次,通过采集不同路面上的实车实验数据进行车辆实验收集机器学习训练的数据集,并分析轮地关系及信号特征。最后,将CNN与LSTM两者的优势相结合实现了对加速度时序信号的特征学习。通过与其它神经网络模型训练结果的比较,验证了所提CNN-LSTM双通道融合神经网络模型的有效性和准确性。本文提出的路面辨识方案实现了实时道路识别的目标,硬件与软件架构和神经网络模型更适合车辆系统搭载,为车辆运动控制提供了实时准确的路面信息。  相似文献   

7.
在3种经典轮胎-路面数学模型的基础上,引入了一种“路面状态特征因子”的概念(它代表最佳滑移率前附着系数-滑移率曲线段下面的封闭面积),给出了7种典型路面的特征因子阈值及其区间,据此识别汽车当前行驶路面状态.基于8自由度汽车动力学模型,分别在单一路面和对接路面上进行制动模拟试验.结果表明该方法能较准确快速地识别路面状态.最后在自制的汽车防抱制动装置试验台上进行的制动试验进一步验证了方法的有效性和可行性.  相似文献   

8.
路面附着系数的识别对汽车稳定性控制起着至关重要的作用。轮胎回正力矩能够反映整车及轮胎的运动、受力状况以及路面环境信息,且利用回正力矩能比使用侧向力更早地估计轮-地接触状况。为此,本文设计一种基于轮胎回正力矩的路面附着系数估计方法。首先,基于二自由度车辆模型设计轮胎侧偏角反馈观测器,对轮胎侧偏角进行实时估计;其次,基于轮胎侧偏角和轮胎回正力矩信息设计路面附着系数估计器,构建路面附着系数评估函数;最后,搭建Carsim与Simulink联合仿真平台,仿真结果表明设计的估计算法能够有效地对路面附着系数进行估计。  相似文献   

9.
根据轮胎与路面间附着系数-滑移率关系曲线的单峰极值特性,将模糊自寻优控制算法应用到车辆气压ABS系统控制器的研究中,并通过硬件在环测试验证了该算法对车辆气压ABS系统的有效控制.与传统的逻辑门限值算法相比,该算法具有结构更简单,且能自适应路面变化的特点.  相似文献   

10.
针对四轮轮毂电机电动汽车行驶过程中的状态估计和在数据测量过程中由于偶然因素使观测序列中存在野值的问题,本文中提出了一种基于抗野值鲁棒容积卡尔曼滤波的车辆行驶状态估计算法。首先利用四轮轮毂电机电动汽车的每个车轮的电机驱动力矩容易测得的优势计算轮胎的纵向力,采用Dugoff轮胎模型计算轮胎的侧向力,建立了汽车非线性3自由度车辆模型。接着通过对简单易测低成本传感器信号的信息融合实现电动汽车在行驶过程中的纵向速度、侧向速度和质心侧偏角的准确估计。最后应用Car Sim和Matlab/Simulink联合仿真对估计算法进行验证。结果表明,基于抗野值鲁棒容积卡尔曼滤波的估计算法比扩展卡尔曼滤波估计算法更能较准确地对车辆行驶状态进行估计,且具有较好的实时性。  相似文献   

11.
以分布式驱动纯电动汽车为研究对象,进行了车辆在多种路面上直线行驶时的附着系数识别方法的研究。根据车辆的多路面滑转率实验数据,选择并改进了轮胎模型。使用带有遗忘因子的递推最小二乘算法对电动汽车行驶的路面进行估计和识别。结果表明,该识别算法可实时、准确、有效和快速地分辨出电动汽车行驶的路面(结冰、干沥青和湿沥青),为车辆的主动安全控制提供依据。  相似文献   

12.
针对轮胎-路面附着系数对于车辆主动安全控制系统的重要性,提出一种以鲁棒稳定性为设计目标的非线性观测器。通过分析轮胎侧向运动,建立数学模型,利用CarSim与Matlab/Simulink搭建联合仿真模型,完成鲁棒自适应观测器设计,获取轮胎路面附着系数和轮胎侧偏角及相关信息,验证并分析所设计观测器的性能。  相似文献   

13.
为了获得实时、准确的路面附着系数,进一步提高观测路面附着系数算法的精度和收敛速度,结合非线性车辆动力学模型和轮胎力修正模型,搭建分布式驱动电动汽车联合仿真平台,提出一种基于自适应衰减无迹卡尔曼滤波的路面附着系数观测算法。该算法设计与各轮对应的路面附着系数观测器,应用协方差匹配判据对观测器发散趋势进行判别,设计自适应加权系数修正预测协方差,以增强新近观测数据的利用率;同时采用次优Sage-Husa噪声估计器对未知的系统过程噪声进行估计,抑制观测器的记忆存储长度,调整过程噪声和测量噪声的均值与协方差,提高观测器的跟踪能力。利用分布式驱动电动汽车分别进行高、低附着路面和对开路面直线制动试验,并将自适应衰减无迹卡尔曼滤波路面附着系数观测器的观测结果与无迹卡尔曼滤波观测值、参考路面附着系数进行比较和分析。结果表明:高附着路面条件下,所设计的算法估计误差可控制在0.64%以内;低附着路面条件下,所设计的算法估计误差可控制在1.03%以内;对开路面条件下估计误差可控制在1.26%以内;自适应衰减无迹卡尔曼滤波算法相比无迹卡尔曼滤波算法响应速率更快,具有更高的估计精度和较强的自适应能力,估计结果整体上维持稳定,能够适应各种不同路面的估计。  相似文献   

14.
车辆侧倾状态估计的研究   总被引:1,自引:0,他引:1  
针对复杂行驶工况下车辆侧倾状态无法准确测取,因而对车辆侧倾无法有效控制的问题,本文中利用车辆耦合动力学与模糊T-S理论,设计了基于模型的T-S状态观测器算法,实现了复杂工况下车辆侧倾状态的实时有效观测。首先,构建了不同路面激励与转向盘转角工况下的车辆垂向与横向运动学模型;接着,在考虑轮胎受力具有强非线性特点的基础上,提出了基于T-S理论的轮胎T-S模型,并采用"魔术公式"对其进行了仿真验证;然后,基于轮胎T-S模型与整车动力学模型,利用贝叶斯理论,设计整车T-S观测器算法;最后,利用Car Sim软件对标准A/C级路面激励工况下整车T-S观测器实时估计的车辆侧倾角与侧倾率进行仿真验证。结果表明,所设计T-S观测器可有效估计车辆侧倾状态,最大标准偏差不超过12%。  相似文献   

15.
范小彬  邓攀 《天津汽车》2013,(12):47-50
为提高汽车主动安全系统自适应控制性能,需要对轮胎/路面附着系数进行精确的识别或估算。鉴于附着系数估计的复杂性,文章综述了目前路面附着系数估算中的汽车动力学建模和轮胎/路面摩擦模型建模,重点讨论了轮胎/路面附着系数识别算法中传感器的直接检测估计法,以及基于车辆动力学、回正力矩和状态观测器等动力学模型的估计算法,并对各估算方法存在的问题与发展趋势等进行了分析。对开发汽车主动安全电控系统和提高汽车产业核心竞争力具有重要意义。  相似文献   

16.
查云飞  吕小龙  陈慧勤  易迎春  王燕燕 《汽车工程》2023,(6):1010-1021+1039
针对车辆在高速转向和不同路面附着系数下的轨迹跟踪控制问题,基于模型预测控制理论提出了一种考虑路面附着系数的变侧偏角约束MPC控制策略。根据魔术公式轮胎模型分析轮胎的侧偏特性以及不同附着系数对轮胎侧偏角-侧向力线性区的影响,建立轮胎侧偏角约束与不同路面附着系数的函数关系;采用遗传算法(GA)优化BP神经网络模型设计路面附着系数估计器,将估计结果作为与轮胎侧偏角约束相关的变量传递到MPC控制器中;最后在MPC控制器中建立系统控制量约束、控制增量约束,以及考虑路面附着系数的变侧偏角约束,将不同路面附着系数工况下的轨迹跟踪问题转化为多约束条件下最优值求解问题,实现轨迹跟踪和车辆稳定性控制。仿真和试验结果表明,考虑路面附着系数变化的MPC控制方法相对传统MPC控制方法在各种工况下具有更高的轨迹跟踪精度和更好的车辆稳定性,GA-BP神经网络路面系数估计方法具有很高的估计精度。  相似文献   

17.
轮胎-路面附着系数对于车辆主动安全控制系统设计与分析十分重要,本文中提出一种以鲁棒稳定性为设计目标的非线性观测器。通过分析轮胎侧向运动,建立数学模型,利用CarSim与Matlab/Simulink软件搭建联合仿真模型,实现鲁棒自适应观测器设计。通过仿真系统获取轮胎路面附着系数和轮胎侧偏角及相关信息,验证并分析所设计观测器的性能。  相似文献   

18.
为实现轮毂电机驱动越野车辆在附着条件多变、路面起伏不定的复杂环境中动力性和稳定性的多目标优化,提出一种基于路面影响因子的自适应转矩控制策略。以滚动阻力差异、空气阻力归一化比例、坡度阻力归一化比例、路面附着差异方差以及最小路面附着系数5个特征参数作为输入,并基于模糊理论方法搭建路面影响因子五参数辨识模型。基于辨识出的路面影响因子,开发整车动力性和稳定性多目标优化自适应转矩控制策略,构建了三层式控制架构:顶层引入路面影响因子对加速度紧迫程度进行判定,采用模型预测控制算法得到期望总驱动力;中层为目标决策层,以最优滑转率为目标决策驱动防滑力矩,并基于路面行驶阻力,决策期望前馈补偿力矩;下层为转矩分配层,以需求总驱动力及轮胎利用率作为控制目标,引入路面影响因子优化两者权重系数,以多约束条件的混合优化算法对转矩进行自适应控制。利用Matlab/Simulink-CarSim联合仿真平台进行仿真,基于实车进行验证。结果表明,在低附着路面,在0.2 s内快速完成滑转率抑制;在对开路面,侧向位移接近0;在大扭曲路面,避免腾空车轮出现大滑转率,滑转率最高0.2。  相似文献   

19.
《汽车工程》2021,43(7)
针对路面条件变化时紧急制动系统易出现的制动时机决策失准问题,提出基于车辆运动学的动态决策增强安全模型的紧急制动策略。首先,依据目标车加减速状态细化工况,基于车辆速度与加速度建立动态决策安全模型,以提高极端工况下控制策略对车辆动态行驶速度的适应性。接着,以无迹卡尔曼滤波(UKF)算法连续辨识获得道路附着系数,通过系列道路条件下对实车和模型的制动性能试验建立路况与车辆减速能力的关系,根据道路条件实时更新模型依赖的极限减速度参数,进一步增强控制策略安全性和对动态道路条件的适应性。最后,通过附着系数连续多变路面工况试验和中国新车评价规程(C-NCAP)测试工况试验,对控制策略进行验证。结果表明,滤波算法具备精准的辨识效果;而自动紧急制动策略可在变化附着系数路面上实现对制动时机的准确决断。  相似文献   

20.
当路面附着情况和车辆行驶状态不断变化时,基于恒定侧偏刚度的模型预测控制(MPC)不能考虑轮胎非线性特性的影响,难以保证车辆轨迹跟踪的适应性。为此,提出一种考虑轮胎侧向力计算误差的自适应模型预测控制(AMPC),以提高智能汽车在不确定工况下的轨迹跟踪性能。分析了路面附着系数和垂向载荷对轮胎侧向力的影响,基于平方根容积卡尔曼滤波(SCKF)算法,设计了利用侧向加速度和横摆角速度作为测量变量的前后轮胎侧向力估计器。利用轮胎侧向力线性计算值与估计值的差值计算得到侧偏刚度修正因子,设计了前后轮胎侧偏刚度的自适应修正准则,进而提出了一种基于时变修正刚度的AMPC控制方法。基于CarSim与MATLAB/Simulink联合仿真和硬件在环测试平台,对AMPC控制的有效性和实时性进行了验证。研究结果表明:在不同的路面附着情况和车辆行驶状态下,AMPC控制都能够降低横向位置偏差和航向角偏差,有效提高车辆的轨迹跟踪精度,其控制效果明显优于基于恒定侧偏刚度的标准MPC控制。尤其在低附着工况下,标准MPC控制会因为线性轮胎力的计算误差过大而导致车辆在轨迹跟踪时严重失稳,而AMPC控制通过估计轮胎力修正侧偏刚度依然能够保证车辆稳定有效的跟踪参考轨迹。所提出的AMPC控制在保证控制精度的同时具有良好的实时性,对智能汽车控制系统的设计与优化具有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号